Share This Article:

Quantum Carnot Heat Engine Efficiency with Minimal Length

Abstract Full-Text HTML XML Download Download as PDF (Size:493KB) PP. 2297-2302
DOI: 10.4236/jmp.2015.615234    2,445 Downloads   2,949 Views   Citations

ABSTRACT

In this paper, the effects of the minimum lengths () to the efficiency of a quantum heat engine are considered. A particle in infinite one-dimensional potential well is used as the “working substance”. We obtain quantized energy of particle in the presence of minimal length, and then we do the isoenergetic cycle. We calculate heat exchanged between the system and reservoir, and then we get the efficiency of the engine. We observe that the minimum length increases efficiency of the engine at the small width of the potential well.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Purwanto, A. , Sukamto, H. and Subagyo, B. (2015) Quantum Carnot Heat Engine Efficiency with Minimal Length. Journal of Modern Physics, 6, 2297-2302. doi: 10.4236/jmp.2015.615234.

References

[1] Kempf, A., Mangano, G. and Mann, R.B. (1995) Physical Review D, 52, 1108.
http://dx.doi.org/10.1103/PhysRevD.52.1108
[2] Maziashvili, M. and Megrelidze, L. (2013) Progress of Theoretical and Experimental Physics, Article ID: 123B06.
[3] Haouat, S. (2014) Physics Letters B, 729, 33-38.
http://dx.doi.org/10.1016/j.physletb.2013.12.060
[4] Hassanabadi, H., Molaee, Z. and Zarrinkamar, S. (2014) Advances in High Energy Physics, Article ID: 459345.
[5] Pedram, P. (2013) Europhysics Letters, 101, Article ID: 30005.
http://dx.doi.org/10.1209/0295-5075/101/30005
[6] Nouicer, K. (2012) Journal of Mathematical Physics, 48, Article ID: 112104.
http://dx.doi.org/10.1063/1.2809267
[7] Harbach, U. and Hossenfelder, S. (2008) Physics Letters B, 632, 379-383.
http://dx.doi.org/10.1016/j.physletb.2005.10.045
[8] Nouicer, K. (2005) Journal of Physics A: Mathematical and General, 38, Article ID: 10027.
http://dx.doi.org/10.1088/0305-4470/38/46/009
[9] Panella, O. (2007) Physical Review D, 76, Article ID: 045012.
http://dx.doi.org/10.1103/PhysRevD.76.045012
[10] Frassino, A.M. and Panella, O. (2012) Physical Review D, 85, Article ID: 045030.
http://dx.doi.org/10.1103/PhysRevD.85.045030
[11] Chang, L.N., Minic, D., Okamura, N. and Takeuchi, T. (2002) Physical Review D, 65, Article ID: 125027.
http://dx.doi.org/10.1103/PhysRevD.65.125027
[12] Menculini, L., Panella, O. and Roy, P. (2015) Physical Review D, 91, Article ID: 045032.
http://dx.doi.org/10.1103/PhysRevD.91.045032
[13] Hassanabadi, H., Molaee, Z. and Zarrinkamar, S. (2012) The European Physical Journal C, 72, 2217.
http://dx.doi.org/10.1140/epjc/s10052-012-2217-5
[14] Betrouche, M., Maamache, M. and Choi, J.R. (2013) Scientific Reports, 3, Article No. 3221.
http://dx.doi.org/10.1038/srep03221
[15] Bender, B.C.M., Brody, D.C. and Meister, B.K. (2000) Journal of Physics A, 33, 4427-4436.
http://dx.doi.org/10.1088/0305-4470/33/24/302
[16] Quan, H.T., Liu, Y., Sun, C.P. and Nori, F. (2007) Physical Review E, 76, Article ID: 031105.
http://dx.doi.org/10.1103/PhysRevE.76.031105
[17] Latifah, E. and Purwanto, A. (2011) Journal of Modern Physics, 2, 1366-1372.
http://dx.doi.org/10.4236/jmp.2011.211169

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.