Share This Article:

The Explanation for the Origin of the Higgs Scalar and for the Yukawa Couplings by the Spin-Charge-Family Theory

Abstract Full-Text HTML XML Download Download as PDF (Size:790KB) PP. 2244-2274
DOI: 10.4236/jmp.2015.615230    2,861 Downloads   3,128 Views   Citations

ABSTRACT

The spin-charge-family theory is a kind of the Kaluza-Klein theories, but with two kinds of the spin connection fields, which are the gauge fields of the two kinds of spins. The SO(13,1) representation of one kind of spins manifests in d = (3 + 1) all the properties of family members as assumed by the standard model; the second kind of spins explains the appearance of families. The gauge fields of the first kind, carrying the space index m = (0,...,3), manifest in d = (3 + 1) all the vector gauge fields assumed by the standard model. The gauge fields of both kinds of spins, which carry the space index (7, 8) gaining at the electroweak break nonzero vacuum expectation values, manifest in d = (3 + 1) as scalar fields with the properties of the Higgs scalar of the standard model with respect to the weak and the hyper charge ( and , respectively), while they carry additional quantum numbers in adjoint representations, offering correspondingly the explanation for the scalar Higgs and the Yukawa couplings, predicting the fourth family and the existence of several scalar fields. The paper 1) explains why in this theory the gauge fields are with the scalar index s = (5,6,7,8) doublets with respect to the weak and the hyper charge, while they are with respect to all the other charges in the adjoint representations; 2) demonstrates that the spin connection fields manifest as the Kaluza-Klein vector gauge fields, which arise from the vielbeins; and 3) explains the role of the vielbeins and of both kinds of the spin connection fields.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Borštnik, N. (2015) The Explanation for the Origin of the Higgs Scalar and for the Yukawa Couplings by the Spin-Charge-Family Theory. Journal of Modern Physics, 6, 2244-2274. doi: 10.4236/jmp.2015.615230.

References

[1] Mankoc Borstnik, N.S. (2015) Physical Review D, 91, Article ID: 065004. [arxiv:1409.7791]
http://dx.doi.org/10.1103/PhysRevD.91.065004
[2] Mankoc Borstnik, N.S. (2013) Spin-Charge-Family Theory Is Explaining Appearance of Families of Quarks and Leptons, of Higgs and Yukawa Couplings. Mankoc Borstnik, N.S., Nielsen, H.B. and Lukman, D., Eds., Proceedings to the 16th Workshop “What Comes beyond the Standard Models”, Bled, 14-21 July 2013, DMFA Zaloznistvo, Ljubljana, 113. [arxiv:1312.1542, arxiv:1409.4981]
[3] Mankoc Borstnik, N.S. (2012) Do We Have the Explanation for the Higgs and Yukawa Couplings of the Standard Model. Mankoc Borstnik, N.S., Nielsen, H.B. and Lukman, D., Eds., Proceedings to the 15th Workshop “What Comes beyond the Standard Models”, Bled, 9-19 of July 2012, DMFA Zaloznistvo, Ljubljana, 56-71.
[arxiv:1302.4305,arxiv:1011.5765]
[4] Mankoc Borstnik, N.S. (2013) Journal of Modern Physics, 4, 823-847. [arxiv:1312.1542]
http://dx.doi.org/10.4236/jmp.2013.46113
[5] Borstnik Bracic, A. and Mankoc Borstnik, N.S. (2006) Physical Review D, 74, Article ID: 073013.
[hep-ph/0301029; hep-ph/9905357, p. 52-57; hep-ph/0512062, p. 17-31; hep-ph/o401043, p. 31-57]
[6] Mankoc Borstnik, N.S. (1992) Physics Letters B, 292, 25-29.
http://dx.doi.org/10.1016/0370-2693(92)90603-2
[7] Mankoc Borstnik, N.S. (1993) Journal of Mathematical Physics, 34, 3731.
http://dx.doi.org/10.1063/1.530055
[8] Mankoc Borstnik, N.S. (2001) International Journal of Theoretical Physics, 40, 315-338.
http://dx.doi.org/10.1023/A:1003708032726
[9] Mankoc Borstnik, N.S. (1995) Modern Physics Letters A, 10, 587.
http://dx.doi.org/10.1142/S0217732395000624
[10] Bregar, G., Breskvar, M., Lukman, D. and Mankoc Borstnik, N.S. (2008) New Journal of Physics, 10, Article ID: 093002.
http://dx.doi.org/10.1088/1367-2630/10/9/093002
[11] Bregar, G. and Mankoc Borstnik, N.S. (2009) Physical Review D, 80, Article ID: 083534.
http://dx.doi.org/10.1103/PhysRevD.80.083534
[12] Bregar, G. and Mankoc Borstnik, N.S. (2003) Can We Predict the Fourth Family Masses for Quarks and Leptons? Mankoc Borstnik, N.S., Nielsen, H.B. and Lukman, D., Eds., Proceedings to the 16th Workshop “What Comes beyond the Standard Models”, Bled, 14-21 July 2013, DMFA Zaloznistvo, Ljubljana, 31-51. [arxiv:1403.4441]
[13] Blagojevic, M. (2002) Gravitation and Gauge Symmetries. IoP Publishing, Bristol.
http://dx.doi.org/10.1887/0750307676
[14] Lukman, D., Mankoc Borstnik, N.S. and Nielsen, H.B. (2011) New Journal of Physics, 13, Article ID: 103027.
http://dx.doi.org/10.1088/1367-2630/13/10/103027
[15] Lukman, D. and Mankoc Borstnik, N.S. (2012) Journal of Physics A: Mathematical and Theoretical, 45, Article ID: 465401. [arxiv:1205.1714; arxiv:1312.541; hepph/0412208, p. 64-84]
http://dx.doi.org/10.1088/1751-8113/45/46/465401
[16] Mankoc Borstnik, N.S. and Nielsen, H.B.F. (2014) Journal of High Energy Physics, 165. [arXiv:1212.2362]
http://dx.doi.org/10.1007/JHEP04(2014)165
[17] Troha, T., Lukman, D. and Mankoc Borstnik, N.S. (2014) International Journal of Modern Physics A, 29, Article ID: 1450124. [arXiv:1312.1541]
http://dx.doi.org/10.1142/S0217751X14501243
[18] Pati, J. and Salam, A. (1974) Physical Review D, 10, 275.
http://dx.doi.org/10.1103/PhysRevD.10.275
[19] Mankoc Borstnik, N.S. and Nielsen, H.B. (2000) Physical Review D, 62, Article ID: 044010. [hep-th/9911032]
http://dx.doi.org/10.1103/PhysRevD.62.044010
[20] Mankoc Borstnik, N.S. and Nielsen, H.B. (2002) Journal of Mathematical Physics, 43, 5782. [hep-th/0111257]
http://dx.doi.org/10.1063/1.1505125
[21] Mankoc Borstnik, N.S. and Nielsen, H.B. (2003) Journal of Mathematical Physics, 44, 4817. [hep-th/0303224]
http://dx.doi.org/10.1063/1.1610239
[22] Mankoc Borstnik, N.S., Nielsen, H.B. and Lukman, D. (2004) An Example of Kaluza-Klein-Like Theories Leading after Compactification to Massless Spinors Coupled to a Gauge Field-Derivations and Proofs. Mankoc Borstnik, N., Nielsen, H.B., Froggatt, C. and Lukman, D., Eds., Proceedings to the 7th Workshop “What Comes Beyond the Standard Models”, Bled, 19-31 July 2004, DMFA Zaloznistvo, Ljubljana, 64-84. [hep-ph/0412208]
[23] Georgi, H. and Glashow, S. (1974) Physical Review Letters, 32, 438.
http://dx.doi.org/10.1103/PhysRevLett.32.438
[24] Zee, A., Ed. (1982) Unity of Forces in the Universe. World Scientic, Singapore. arXiv:1403.2099 [hep-ph]
[25] Lee, H.C., Ed. (1983) The Authors of the Works Presented in an Introduction to Kaluza-Klein Theories. World Scientic, Singapore.
Appelquist, T., Chodos, A. and Freund, P.G.O., Eds. (1987) Modern Kaluza-Klein Theories. Addison Wesley, Reading.
[26] Witten, E. (1981) Nuclear Physics B, 186, 412-428.
http://dx.doi.org/10.1016/0550-3213(81)90021-3
[27] Borstnik, A. and Mankoc Borstnik, N.S. (2003) Weyl Spinor of SO(1, 13), Families of Spinors of the Standard Model and Their Masses. Mankoc Borstnik, N., Nielsen, H.B., Froggatt, C. and Lukman, D., Eds., Proceedings to the Euroconference on Symmetries beyond the Standard Model, Portoroz, 12-17 July 2003, DMFA, Zaloznistvo, Ljubljana, 31-57. [hep-ph/0401043; hep-ph/0401055]

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.