Structural Inversion and Behavioural Changes as a Function of Composition in Sr-La-Al-B-Si Based Glasses

Abstract

A series of glass sealants for solid oxide fuel cell (SOFC) with compositions SrO (x wt %) La2O3 (15 wt %) Al2O3 (15 wt %) B2O3 (40-x wt %) SiO2 (30 wt %) [x = 10, 15, 20, 25 & 30] [SLABS] have been investigated by quantitative Fourier Transform Infrared Spectroscopy (FTIR). Structural findings from FTIR reveal that with increasing substitu-tion of B2O3 by SrO, even though the B2O3/SiO2 ratio decreases, however the Si-O- non-bridging bond content in the matrix is increasing and glass structure is getting more inverted. UV-Vis Diffused Reflectance Spectroscopy (UV-Vis-DRS) of the glass series shows that electrical band gap of glasses decreases in the series from 3.07eV to 2.97eV with increasing substitution from x = 10 to x = 30. Conductivities of the glass samples were measured by AC impedance spectroscopy and found to be increasing from 2.74 × 10-5 Scm-1 to 1.09 × 10-4 Scm-1 with increasing substitution from x =10 to x = 30.

Share and Cite:

P. Ojha, S. Rath, T. Chongdar, N. Gokhale and A. Kulkarni, "Structural Inversion and Behavioural Changes as a Function of Composition in Sr-La-Al-B-Si Based Glasses," New Journal of Glass and Ceramics, Vol. 1 No. 2, 2011, pp. 21-27. doi: 10.4236/njgc.2011.12004.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] H. J. L. Trapp and J. M. Stevels, “Physical Properties of Invert Glasses,” Glasstechn. Ber., 32K V. Internationaler Glaskongress, Miinchen, 1959, pp. VI/31-52.
[2] V. Sudarsan, V. K. Shrikhande, G. P. Kothiyal and S. K. Kulshreshtha, “Structural Aspects of B2O3-Substituted (PbO)0.5 (SiO2)0.5 Glasses,” Journal of Physics: Condensed Matter, Vol. 14, No. 25, 2002, pp. 6553-6565. doi:10.1088/0953-8984/14/25/322
[3] K. Kobayashi, “Thermogravimetric and MOS Capacitor Properties for PbO-Bi2O3-B2O3-SiO2 Glass System,” Journal of Non-Crystalline Solids, Vol. 124, No. 2-3, 1990, pp. 229-232. doi:10.1016/0022-3093(90)90267-P
[4] G. E. Jellison and P. J. Bray, “A Structural Interpretation of B10 and B11 NMR Spectra in Sodium Borate Glasses,” Journal of Non-Crystalline Solids, Vol. 29, No. 2, 1978, pp. 187-206. doi:10.1016/0022-3093(78)90113-8
[5] G. Bhasin, A. Bhatnagar, S. Bhowmick, C. Stehle, M. Affatigato, S. Feller, J. MacKenzie and S. Martin, “Short Range Order Structure in Sodium Borosilicate Glasses Obtained from Deconvolution of 29Si MAS NMR Spectra,” Physics and Chemistry of Glasses, Vol. 39, 1998, p. 269.
[6] B. G. Parkinson, D. Holland, M. E. Smith, A. P. Howes and C. R. Scales, “The Effect of Cs2O Additions on HLW Waste form Glasses,” Journal of Non-Crystalline Solids, Vol. 351, No. 30-32, 2005, pp. 2425-2432. doi:10.1016/j.jnoncrysol.2005.06.035
[7] S. Feller, W. J. Dell and P. J. Bray, “B10 NMR Studies of Lithium Borate Glasses,” Journal of Non-Crystalline Solids, Vol. 51, No. 1, 1982, pp. 21-30. doi:10.1016/0022-3093(82)90186-7
[8] R. K. Brow, D. R. Tallant, S. T. Myers and C. C. Phifer, “The Short Range Structure of Zinc Phosphate glass,” Journal of Non-Crystalline Solids, Vol. 191, No. 1-2, 1995, pp. 45-55. doi:10.1016/0022-3093(95)00289-8
[9] P. P. Proulx, G. Cormier, J. A. Capobianco, B. Champagnon and M. Bettinelli, “Raman and Low Frequency Raman Spectroscopy of Lead, Zinc and Barium Metaphosphate Glasses Doped with Eu3+ Ions,” Journal of Physics: Condensed Matter, Vol. 6, No. 1, 1994, pp. 275-283. doi:10.1088/0953-8984/6/1/027
[10] S. Bale and S. Rahman, “Glass Structure and Transport Properties of Li2O Containing Zinc Bismuthate Glasses,” Optics Materials, Vol. 31, No. 2, 2008, pp. 333-337. doi:10.1016/j.optmat.2008.05.007
[11] K. El-Egili, “Infrared Studies of Na2O-B2O3-SiO2 and Al2O3-Na2O-B2O3-SiO2 Glasses,” Physica B, Vol. 325, No. 1-4, 2003, pp. 340-348. doi:10.1016/S0921-4526(02)01547-8
[12] V. Kumar, A. Arora, O. P. Pandey and K. Singh, “Studies on Thermal and Structural Properties of Glasses as Sealants for Solid Oxide Fuel Cells,” International Journal of Hydrogen Energy, Vol. 33, No. 1, 2008, pp. 434-438. doi:10.1016/S0921-4526(02)01547-8
[13] F. Moreau, A. Durán and F. Mu?oz, “Structure and Properties of High Li2O-Containing Aluminophosphate Glasses,” Journal of European Ceramic Society, Vol. 29, No. 10, 2009, pp. 1895-1902. doi:10.1016/j.jeurceramsoc.2008.12.016
[14] J. Ramkumar, V. Sudarsan, S. Chandramouleeswaran, V. K. Shrikhande, G. P. Kothiyal, P. V. Ravindran, S. K. Kulshreshtha and T. Mukherjee, “Structural Studies on Boroaluminosilicate Glasses,” Journal of Non-Crystalline Solids, Vol. 354, No. 15-16, 2008, pp. 1591-1597. doi:10.1016/j.jnoncrysol.2007.10.005
[15] M. S. Gaafar, H. A. Afifi and M. M. Mekawy, “Structural Studies of Some Phospho-Borate Glasses Using Ultrasonic Pulse-Echo Technique, DSC and IR Spectroscopy,” Physica B: Condensed Matter, Vol. 404, No. 12-13, 2009, pp. 1668-1673. doi:10.1016/j.jnoncrysol.2007.10.005
[16] M. S. Gaafar, N. S. A. El-Aal, O. W. Gerges and G. El-Amir, “Elastic Properties and Structural Studies on Some Zinc-Borate Glasses Derived from Ultrasonic, FT-IR and X-Ray Techniques,” Journal of Alloys and Compounds, Vol. 475, No. 1-2, 2009, pp. 535-542. doi:10.1016/j.jnoncrysol.2007.10.005
[17] U. Hoppe, G. Walter, R. Kranold and D. Stachel, “Structural Specifics of Phosphate Glasses Probed by Diffraction Methods: A Review,” Journal of Non-Crystalline Solids, Vol. 263-264, No. 1-2, 2000, pp. 29-47. doi:10.1016/j.jnoncrysol.2007.10.005
[18] K. Suzuya, D. L. Price, C. K. Loong and S. W. Martin, “Structure of Vitreous P2O5 and Alkali Phosphate Glasses,” Journal of Non-Crystalline Solids, Vol. 232-234, 1998, pp. 650-657.
[19] A. Hayashi, M. Nakai, M. Tatsumisago, T. Minami, Y. Himei, Y. Miura and M. Katada, “Structural Investigation of SnO-B2O3 Glasses by Solid-State NMR and X-Ray Photoelectron Spectroscopy,” Journal of Non-Crystalline Solids, Vol. 306, No. 3, 2002, pp. 227-237. doi:10.1016/S0022-3093(02)01169-9
[20] N. P. Lower, J. L. McRae, H. A. Feller, A. R. Betzen, S. Kapoor, M. Affatigato and S. A. Feller, “Physical Properties of Alkaline-Earth and Alkali Borate Glasses Prepared over an Extended Range of Compositions,” Journal of Non-Crystalline Solids, Vol. 293-295, 2001, pp. 669-675.
[21] R and IR Spectroscopies,” Journal of Non-Crystalline Solids, Vol. 232-234, 1998, pp. 113-118. doi:10.1016/S0022-3093(98)00380-9
[22] E. I. Kamitsos, A. P. Patsis, M. A. Karakassides and G. D. Chryssikos, “Infrared Reflectance Spectra of Lithium Borate Glasses,” Journal of Non-Crystalline Solids, Vol. 126, No. 1-2, 1990, pp. 52-67. doi:10.1016/0022-3093(90)91023-K
[23] E. I. Kamitsos, M. A. Karakassides and G. D. Chryssikos, “A Vibrational Study of Lithium Borate Glasses with High Li2O Content,” Physics and Chemistry of Glasses, Vol. 28, 1987, p. 203.
[24] E. I. Kamitsos, M. A. Karakassides and G. D. Chryssikos, “Vibrational-Spectra of Magnesium-Sodium-Borate Glasses. 2. Raman and Midinfrared Investigation of the Network Structure,” Journal of Physical Chemistry, Vol. 91, No. 5, 1987, pp. 1073-1079. doi:10.1021/j100289a014
[25] K. Lu and M. K. Mahapatra, “Network Structure and Thermal Stability Study of High Temperature Seal Glass,” Journal of Applied Physics, Vol. 104, No. 7, 2008, pp. 074910-1-074910-9. doi:10.1063/1.2979323
[26] P. Brix and L. Gaschler, “Sealing Glass for the Production of Glass-to-Metal Seals,” US Patent, US 5137849, 1992.
[27] H. A. A. Sidek, S. Rosmawati and Z. A. Talib, “Synthesis and Optical Properties of ZnO-TeO2 Glass System,” American Journal of Applied Sciences, Vol. 6, No. 8, 2009, pp. 1489-1494. doi:10.3844/ajassp.2009.1489.1494
[28] R. H. Doremus, “Glass Science,” 2nd Edition, John Wiley & Sons Inc., New York, 1994.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.