Share This Article:

The Association of the Neutron, and the Quantum Properties of Hydrogen, with the Prime Numbers 2, 3, 5, 7, 11

Abstract Full-Text HTML XML Download Download as PDF (Size:501KB) PP. 2145-2157
DOI: 10.4236/jmp.2015.614218    2,866 Downloads   3,166 Views   Citations

ABSTRACT

The Harmonic Neutron Hypothesis, HNH, has demonstrated that many of the fundamental physical constants are associated with quantum integers, n, within a classic integer and partial harmonic fraction system, and follow a known two-dimensional, 2D, power law geometry. These are exponents of a fundamental frequency, vF, the basis of which is the annhilation frequency of the neutron, vn0. Our goal to a first approximation is to derive the frequency equivalents of the Rydberg constant, vR, the Bohr radius, va0, the electron, ve-, and the reciprocal fine structure constant, 1/α all from vn0, π, and a small set of prime integers only. The primes used in the derivations are respectively 2, 3, 5, 7, and 11. This is possible since it is known that the number 3 is associated with R, 5 with a0, 7 with e-, and 11 with 1/α. In addition, the interrelationships of the frequency ratio equivalents of these natural units with 2 and π are known, thus allowing for the derivation of any one from the others. Also the integer and partial fractions of a0, e-, and n0 define Planck time squared, tP2. An accurate estimate of tP2 from vF alone is also related to the integer 2 since gravity is a kinetic force. Planck time squared, tP2 scales the Y-axis, and vF scales the X-axis. In conclusion the quantum properties of hydrogen are derived from only the natural unit physical data of the neutron, to a relative precision ranging from 2.6 × 10-3 to 6.7 × 10-4. This supports the hypothesis that many of the fundamental constants are related to vn0.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Chakeres, D. and Vento, R. (2015) The Association of the Neutron, and the Quantum Properties of Hydrogen, with the Prime Numbers 2, 3, 5, 7, 11. Journal of Modern Physics, 6, 2145-2157. doi: 10.4236/jmp.2015.614218.

References

[1] Beringer, J., et al. (2012) PDG Live Particle Summary Quarks (u, d, s, c, b, t, b', t', Free). Particle Data Group, PR D86, 010001.
http://pdg.lbl.gov
[2] Gell-Mann, M. (1964) The Eightfold Way: A Theory of Strong Interaction Symmetry. In: Gell-Mann, M. and Ne’eman, Y., Eds., The Eightfold Way, Westview Press, Boulder.
[3] Griffiths, J.D. (2008) Introduction to Elementary Particles. 2nd Edition, Wiley-VCH, Weinheim.
[4] Oerter, R. (2006) The Theory of Almost Everything: The Standard Model, the Unsung Triumph of Modern Physics. In: Kindle, Ed., Penguin Group, 2.
[5] Braibant, S., Giacomelli, G. and Spurio, M. (2009) Particles and Fundamental Interactions: An Introduction to Particle Physics. Springer, Berlin, 313-314.
[6] Lykken, J. and Spiropulu, M. (2014) Scientific American, 310, 34-39.
http://dx.doi.org/10.1038/scientificamerican0514-34
[7] Witten, E. (1995) Nuclear Physics B, 443, 85-126.
http://dx.doi.org/10.1016/0550-3213(95)00158-O
[8] Sima, J. and Sukenik, M. (2002) Localization of Gravitational Energy and Its Potential to Evaluation of Hydrogen Atom Properties. arXiv:gr-qc/0011057.
[9] Sivaram, C. (1982) Astrophysics and Space Science, 88, 507-510.
http://dx.doi.org/10.1007/BF01092717
[10] Petley, B.W. (1983) NATO Advanced Science Institutes Series, 98, 333-351.
[11] Ivanchik, A.V., Rodriguez, E., Petitjean, P. and Varshalovich, D.A. (2002) Astronomy Letters, 28, 423-427.
http://dx.doi.org/10.1134/1.1491963
[12] Blatt, S., Ludlow, A.D., Campbell, G.K., et al. (2008) Physical Review Letters, 100, Article ID: 140801.
http://dx.doi.org/10.1103/PhysRevLett.100.140801
[13] Marion, H., Pereira Dos Santos, F., Abgrall, M., et al. (2003) Physical Review Letters, 90, Article ID: 150801.
http://dx.doi.org/10.1103/PhysRevLett.90.150801
[14] Uzan, J.P. (2003) Reviews of Modern Physics, 75, 403-455.
http://dx.doi.org/10.1103/RevModPhys.75.403
http://arxiv.org/abs/hep-ph/0205340
[15] Chakeres, D.W. (2011) Particle Physics Insights, 4, 33-38.
http://dx.doi.org/10.4137/PPI.S8269
[16] Chakeres, D.W. and Vento, R. (2015) Advances in Pure Mathematics, 5, 240-250.
http://dx.doi.org/10.4236/apm.2015.55025
[17] Chakeres, D.W. (2009) Particle Physics Insights, 2, 1-20.
[18] Chakeres, D.W. (2011) Particle Physics Insights, 4, 25-31.
http://dx.doi.org/10.4137/PPI.S8241
[19] Chakeres, D.W. (2014) Journal of Modern Physics, 5, 1670-1683.
http://dx.doi.org/10.4236/jmp.2014.516167
[20] Chakeres, D.W. and Vento, R. (2015) Journal of Modern Physics, 6, 283-302.
http://dx.doi.org/10.4236/jmp.2015.63033
[21] Chakeres, D.W. (2013) Particle Physics Insights, 6, 1-7.
[22] Series, G.W. (2009) Contemporary Physics, 50, 131-150.
http://dx.doi.org/10.1080/00107510902734813
[23] Newman, M.E.J. (2005) Contemporary Physics, 46, 323-351.
http://dx.doi.org/10.1080/00107510500052444
[24] Hage-Hassan, M. (2013) A Note on Quarks and Numbers Theory.
http://arxiv.org/abs/1302.6342
[25] Weinberg, S. (1975) Physical Review D, 11, 3583-3593.
http://dx.doi.org/10.1103/PhysRevD.11.3583
[26] Shup, M.A. (1979) Physics Letters B, 86, 87-89.
http://dx.doi.org/10.1016/0370-2693(79)90627-0
[27] Koide, Y. (1983) Physics Letters B, 120, 161-165.
http://dx.doi.org/10.1016/0370-2693(83)90644-5
[28] Greenberg, O.W., Mohapatra, R.N. and Yasuè, M. (1983) Physical Review Letters, 51, 1737-1740.
http://dx.doi.org/10.1103/PhysRevLett.51.1737
[29] Duff, M.J., Okun, L.B. and Veneziano, G. (2002) Journal of High Energy Physics, 2002, 23.
http://dx.doi.org/10.1088/1126-6708/2002/03/023
[30] Koide, Y. (1982) Lettere al Nuovo Cimento, 34, 201-205.
http://dx.doi.org/10.1007/BF02817096
[31] Selvam, A.M. (2000) Quantum-Like Chaos in Prime Number Distribution and in Turbulent Fluid Flows.
http://arxiv.org/html/physics/0005067%%%
[32] Cohen-Tannioudji, G. (1993) Universal Constants in Physics. McGraw-Hill, Inc., New York, 108.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.