Share This Article:

Electro-Weak Gauge, Weinberg-Salam Angle

Abstract Full-Text HTML XML Download Download as PDF (Size:332KB) PP. 2080-2092
DOI: 10.4236/jmp.2015.614215    3,993 Downloads   4,421 Views   Citations

ABSTRACT

The main aim of this paper is to explain why the Weinberg-Salam angle in the electro-weak gauge group satisfies . We study the gauge potentials of the electro-weak gauge group from our wave equation for electron + neutrino. These potentials are space-time vectors whose components are amongst the tensor densities without derivative built from the three chiral spinors of the wave. The  gauge invariance allows us to identify the four potential space-time vectors of the electro-weak gauge to four of the nine possible vectors. One and only one of the nine derived bivector fields is the massless electromagnetic field. Putting back the four potentials linked to the spinor wave into the wave equation we get simplified equations. From the properties of the second-order wave equation we obtain the Weinberg-Salam angle. We discuss the implications of the simplified equations, obtained without second quantification, on mass, charge and gauge invariance. Chiral gauge, electric gauge and weak gauge are simply linked.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Daviau, C. and Bertrand, J. (2015) Electro-Weak Gauge, Weinberg-Salam Angle. Journal of Modern Physics, 6, 2080-2092. doi: 10.4236/jmp.2015.614215.

References

[1] DeBroglie, L. (1924) Annales de la Fondation Louis de Broglie, 17, 1.
[2] Dirac, P.A.M. (1928) Proceedings of the Royal Society of London, 117, 610-624.
http://dx.doi.org/10.1098/rspa.1928.0023
[3] Darwin, C.G. (1928) Proceedings of the Royal Society of London, 118, 554.
[4] DeBroglie, L. (1934) L’électron magnétique. Hermann, Paris.
[5] De Broglie, L. (1940) La mécanique du photon, Une nouvelle théorie de la lumière: Tome 1 La lumière dans le vide. Hermann, Paris.
[6] De Broglie, L. (1942) Tome 2 Les interactions entre les photons et la matière. Hermann, Paris.
[7] Weinberg, S. (1967) Physical Review Letters, 19, 1264-1266.
http://dx.doi.org/10.1103/PhysRevLett.19.1264
[8] Lochak, G. (1983) Annales de la Fondation Louis de Broglie, 8, 4.
[9] Lochak, G. (1984) Annales de la Fondation Louis de Broglie, 9, 1.
[10] Lochak, G. (1985) International Journal of Theoretical Physics, 24, 1019-1050.
http://dx.doi.org/10.1007/BF00670815
[11] Lochak, G. (2004) Annales de la Fondation Louis de Broglie, 29, 297-316.
[12] Lochak, G. (2008) Annales de la Fondation Louis de Broglie, 33, 107-127.
[13] Lochak, G. (2010) Annales de la Fondation Louis de Broglie, 35, 1-18.
[14] Daviau, C. and Bertrand, J. (2014) Journal of Modern Physics, 5, 1001-1022.
http://dx.doi.org/10.4236/jmp.2014.511102
[15] Daviau, C. and Bertrand, J. (2014) Journal of Modern Physics, 5, 2149-2173.
http://dx.doi.org/10.4236/jmp.2014.518210
[16] Daviau, C. (1993) Equation de Dirac non linéaire. PhD Thesis, Université de Nantes, Nantes.
[17] Daviau, C. (2013) Advances in Imaging and Electron Physics, 179, 1-136.
http://dx.doi.org/10.1016/B978-0-12-407700-3.00001-6
[18] Daviau, C. (2012) Advances in Applied Clifford Algebras, 22, 611-623.
http://dx.doi.org/10.1007/s00006-012-0351-7
[19] Daviau, C. and Bertrand, J. (2014) New Insights in the Standard Model of Quantum Physics in Clifford Algebra. Je Publie, Pouillé-les-coteaux.
http://hal.archives-ouvertes.fr/hal-00907848
[20] Daviau, C. (2015) Advances in Applied Clifford Algebras, 25.
http://dx.doi.org/10.1007/s00006-015-0566-5
[21] Daviau, C. and Bertrand, J. (2015) Journal of Modern Physics, 6, 1647-1656.
http://dx.doi.org/10.4236/jmp.2015.611166
[22] Daviau, C. and Bertrand, J. (2015) Journal of Applied Mathematics and Physics, 3, 46-61.
http://dx.doi.org/10.4236/jamp.2015.31007
[23] Daviau, C. and Bertrand, J. (2015) The Standard Model of Quantum Physics in Clifford Algebra. World Scientific Publishing, Singapore.
http://dx.doi.org/10.1142/9780
[24] Costa de Beauregard, O. (1989) Annales de la Fondation Louis de Broglie, 14, 335-342.
[25] Takabayasi, T. (1957) Progress of Theoretical Physics Supplements, 4, 1-80.
http://dx.doi.org/10.1143/ptps.4.2
[26] Hestenes, D. (1973) Journal of Mathematical Physics, 14, 893-905.
http://dx.doi.org/10.1063/1.1666413
[27] Hestenes, D. (1986) A Unified Language for Mathematics and Physics. In: Chisholm, J.S.R. and Common, A.K., Eds., Clifford Algebras and Their Applications in Mathematics Physics, Reidel, Dordrecht, 1-23.
http://dx.doi.org/10.1007/978-94-009-4728-3_1
[28] Boudet, R. (1995) The Takabayasi Moving Frame, from a Potential to the Z Boson. In: Jeffers, S. and Vigier, J., Eds., The Present Status of the Quantum Theory of Light, Kluwer, Dordrecht, 471-481.
[29] Boudet, R. (2011) Quantum Mechanics in the Geometry of Space-Time. Springer, Heidelberg.
http://dx.doi.org/10.1007/978-3-642-19199-2
[30] Daviau, C. (1998) Annales de la Fondation Louis de Broglie, 23, 27-37.
[31] Socroun, T. (2015) Advances in Applied Clifford Algebras, 25.
http://dx.doi.org/10.1007/s00006-015-0558-5

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.