Share This Article:

On the Massless Vector Fields in a Rindler Space

Abstract Full-Text HTML XML Download Download as PDF (Size:346KB) PP. 1743-1755
DOI: 10.4236/jmp.2015.612176    2,195 Downloads   2,487 Views   Citations

ABSTRACT

We study the quantum theory of the mass-less vector fields on the Rindler space. We evaluate the Bogoliubov coefficients by means of a new technique based upon the use of light-front coordinates and Mellin transform. We briefly comment about the ensuing Unruh effect and its consequences.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Soldati, R. and Specchia, C. (2015) On the Massless Vector Fields in a Rindler Space. Journal of Modern Physics, 6, 1743-1755. doi: 10.4236/jmp.2015.612176.

References

[1] Birrel, N.D. and Davies, P.C.W. (1982) Quantum Fields in Curved Space. Cambridge University Press, Cambridge (UK).
http://dx.doi.org/10.1017/CBO9780511622632
[2] Hawton, M. (2013) Physical Review A, 87, Article ID: 042116. arXiv:1304.5138v1 [quant-ph]
[3] Specchia, C. (2013) Vector Fields in a Rindler Space. AMS Tesi di Laurea, Bologna University, Bologna.
[4] Unruh, W.G. (1976) Physical Review D, 14, 870-892.
http://dx.doi.org/10.1103/PhysRevD.14.870
[5] Fulling, S.A. (1973) Physical Review D, 7, 2850.
http://dx.doi.org/10.1103/PhysRevD.7.2850
[6] Fedotov, A.M., Mur, V.D., Narozhny, N.B., Belinskiand, V.A. and Karnakov, B.M. (1999) Physics Letters A, 254, 126-132.
http://dx.doi.org/10.1016/S0375-9601(99)00092-4
[7] Longhi, P. and Soldati, R. (2011) Physical Review D, 83, Article ID: 107701. arXiv:1101.5976 [hep-th]
http://dx.doi.org/10.1103/PhysRevD.83.107701
[8] Castorina, P. and Finocchiaro, M. (2012) Jour. Mod. Phys. 3, 1703. arXiv:1207.3677 [hep-th]
[9] Cotaescu, I.I. (2015) Europhysics Letters, 109, 4, Article ID: 40002. arXiv:1407.2502 [gr-qc]
Cotaescu, I.I. (2013) How to Kill the Unruh Effect. e-Print, arXiv:1301.6650v4 [gr-qc]
[10] Linet, B. (1998) International Journal of Modern Physics D, 7, 61-71.
http://dx.doi.org/10.1142/S0218271898000061
[11] Lenz, F., Ohta, K. and Yazaki, K. (2008) Physical Review D, 78, Article ID: 065026.
http://dx.doi.org/10.1103/PhysRevD.78.065026
[12] Crispino, L.C.B., Higuchi, A. and Matsas, G.E.A. (2008) Reviews of Modern Physics, 80, 787-838.
http://dx.doi.org/10.1103/RevModPhys.80.787
[13] Oriti, D. (2000) Il Nuovo Cimento, B115, 1005-1024.
[14] Longhi, P. and Soldati, R. (2013) International Journal of Modern Physics A, 28, Article ID: 1350109.
http://dx.doi.org/10.1142/S0217751X13501091
[15] Bleuler, K. (1950) Helvetica Physica Acta, 23, 567-586.
Gupta, S.N. (1950) Proceedings of the Physical Society A, 63, 681-691.
http://dx.doi.org/10.1088/0370-1298/63/7/301
Lautrup, B. (1967) Kongelige Danske Videnskabernes Selskab Mat.-fys. Medd, 35, 1.
Nakanishi, N. (1966) Progress of Theoretical Physics, 35, 1111-1116.
http://dx.doi.org/10.1143/PTP.35.1111
Nakanishi, N. (1973) Progress of Theoretical Physics, 49, 640-651.
http://dx.doi.org/10.1143/PTP.49.640
Nakanishi, N. (1974) Progress of Theoretical Physics, 52, 1929-1945.
http://dx.doi.org/10.1143/PTP.52.1929
Nakanishi, N. (1972) Progress of Theoretical Physics Supplements, 51, 1-95.
http://dx.doi.org/10.1143/PTPS.51.1
[16] Aref’eva, I.Y. and Volovich, I.V. (2013) Note on the Unruh Effect. e-Print arXiv:1302.6699 [hep-th].
[17] Rindler, W. (1964) American Journal of Physics, 34, 1174-1178.
http://dx.doi.org/10.1119/1.1972547
Rindler, W. (1969) Essential Relativity. Van Nostrand, New York.
[18] Sokolovsky, M. (2013) Rindler Space and Unruh Effect. e-Print arXiv:1304.2833v2 [gr-qc].
[19] Gradshteyn, I.S. and Ryzhik, I.M. (1996) Table of Integrals, Series, and Products. Fifth Edition, Jeffrey, A., Ed., Academic Press, San Diego.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.