The Electrochemical Behaviour of PEDOT Film Electrosynthesized in Presence of Some Dopants

Abstract

Electropolymerization and characterization of poly(3,4-ethylene dioxythiophene) (PEDOT) doped with functionalized single-walled carbon nanotubes (SWANTs) polyaminobenzene sulfonic acid (PABS) and different dopants were studied. It was fabricated by a simple oxidative electropolymerization method. The nanocomposite coatings have been prepared by using electrochemical methods from aqueous solutions, such that the components were deposited onto platinum electrode substrate. The morphology of composite films was analyzed by scanning electron microscopy (SEM). The electrochemical and physical properties of the resulting composites were evaluated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and Fourier transform infrared spectroscopy (FT-IR) techniques in 0.1 M LiClO4 aqueous solutions. The value of specific electrochemical capacitance of the composite films is considerably higher than that of the pure polymers films. The improved properties of the electrodes were obtained by using these composite films. The dopant substances used were sodium dodecyl sulfate (SDS) and 1,2-Dihydroxy- benzene-3,5-disulfonic acid disodium salt hydrate (tiron).

Share and Cite:

Branzoi, F. and Branzoi, V. (2015) The Electrochemical Behaviour of PEDOT Film Electrosynthesized in Presence of Some Dopants. Open Journal of Organic Polymer Materials, 5, 89-102. doi: 10.4236/ojopm.2015.54010.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Hung, S., Wen, T. and Gopalan, A. (2002) Application of Statistical Design Strategies to Optimize the Conductivity of Electrosynthesized Polypyrrole. Materials Letters, 55, 165-170.
http://dx.doi.org/10.1016/S0167-577X(01)00640-1
[2] Morvant, M.C. and Reynolds, J.R. (1998) In Situ Conductivity Studies of Poly(3,4-ethylenedioxythiophene). Synthetic Metals, 92, 57-61.
http://dx.doi.org/10.1016/S0379-6779(98)80023-4
[3] Gupta, V. and Miura, N. (2006) High Performance Electrochemical Supercapacitor from Electrochemically Synthesized Nanostructured Polyaniline. Materials Letters, 60, 1466-1469.
http://dx.doi.org/10.1016/j.matlet.2005.11.047
[4] Lota, K., Khomenko, V. and Frackowiak, E. (2004) Capacitance Properties of Poly(3,4-ethylenedioxythiophene)/Car- bon Nanotubes Composites. Journal of Physics and Chemistry of Solids, 65, 295-301.
http://dx.doi.org/10.1016/j.jpcs.2003.10.051
[5] Ajayan, P.M., Stephan, O., Colliex, C. and Trauth, D. (1994) Aligned Carbon Nanotube Arrays Formed by Cutting a Polymer Resin—Nanotube Composite. Science, 265, 1212-1214.
http://dx.doi.org/10.1126/science.265.5176.1212
[6] Dai, L. and Mau, A.W.H. (2001) Controlled Synthesis and Modification of Carbon Nanotubes and C60: Carbon Nanostructures for Advanced Polymeric Composite Materials. Advanced Materials, 13, 899-913.
http://dx.doi.org/10.1002/1521-4095(200107)13:12/13<899::AID-ADMA899>3.0.CO;2-G
[7] Baughman, R.H., Zakhidov, A.A. and Heer, W.A. (2002) Carbon Nanotubes—The Route toward Applications. Science, 297, 787-792.
http://dx.doi.org/10.1126/science.1060928
[8] Liao, Y.Z., Zhang, C., Zhang, Y., Strong, V., Kalantar-zadeh, K., Hoek, E., Wang, K. and Kaner, R. (2011) Carbon Nanotube/Polyaniline Composite Nanofibers: Facile Synthesis and Chemosensors. Nano Letters, 11, 954-959.
http://dx.doi.org/10.1021/nl103322b
[9] Dai, L. (1999) Advanced Syntheses and Microfabrications of Conjugated Polymers, C60-Containing Polymers and Carbon Nanotubes for Optoelectronic Applications. Polymers for Advanced Technologies, 10, 357-420.
http://dx.doi.org/10.1002/(SICI)1099-1581(199907)10:7<357::AID-PAT886>3.0.CO;2-9
[10] Chen, G.Z., Shaffer, M.S.P., Coleby, D., Dioxan, G., Fray, D.J. and Windle, A.H. (2000) Carbon Nanotube and Polypyrrole Composites: Coating and Doping. Advanced Materials, 12, 522-526.
http://dx.doi.org/10.1002/(SICI)1521-4095(200004)12:7<522::AID-ADMA522>3.0.CO;2-S
[11] Saito, Y., Uemura, S. and Hamaguchi, K. (1998) Cathode Ray Tube Lighting Elements with Carbon Nanotube Field Emitters. Japanese Journal of Applied Physics, 37, L346.
http://dx.doi.org/10.1143/JJAP.37.L346
[12] Liao, Y., Zhang, C., Wang, X., Li, X.G., Ippolito, S.J., Kalantar-zadeh, K. and Kaner, R.B. (2011) Carrier Mobility of Single-Walled Carbon Nanotube-Reinforced Polyaniline Nanofibers. The Journal of Physical Chemistry C, 115, 16187-16192.
http://dx.doi.org/10.1021/jp2053585
[13] Prun, A., Branzoi, V. and Branzoi, F. (2011) Ordered Arrays of Copper Nanowires Enveloped in Polyaniline Nanotubes. Journal Applied Electrochemistry, 41, 77-81.
http://dx.doi.org/10.1007/s10800-010-0209-4
[14] Shirakwa, H. (2001) The Discovery of Polyacetylene Film: The Dawning of an Era of Conducting Polymers (Nobel Lecture), Angew. Angewandte Chemie International Edition, 40, 2574-2580.
http://dx.doi.org/10.1002/1521-3773(20010716)40:14<2574::AID-ANIE2574>3.0.CO;2-N
[15] Crispin, X., Jakobsson, F.L.E., Crispin, A., Grim, P.C.M., Andersson, P., Volodin, A., van Haesendonck, C., Van der Auweraer, M., Salaneck, W.R. and Berggren, M. (2006) The Origin of the High Conductivity of Poly (3,4-ethylene- dioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) Plastic Electrodes. Chemistry of Materials, 18, 4354-4360.
http://dx.doi.org/10.1021/cm061032+
[16] Breiby, D.W., Samuelsen, L.B. and Groenendaal, B. (2003) Smectic Structures in Electrochemically Prepared Poly (3,4-ethylenedioxythiophene) Films. Journal of Polymer Science Part B: Polymer Physics, 41, 945-952.
http://dx.doi.org/10.1002/polb.10412
[17] Luo, S.C., Mohamed, A.E., Tansil, N.C., Yu, H.H., Gao, S. and Ying, J.Y. (2008) Poly(3,4-ethylenedioxythiophene) (PEDOT) Nanobiointerfaces: Thin, Ultrasmooth, and Functionalized PEDOT Films with in Vitro and in Vivo Biocompatibility. Langmuir, 24, 8071-8077.
http://dx.doi.org/10.1021/la800333g
[18] Groenendaal, B.L., Jonas, F., Freitag, D., Pielartzik, H. and Reynolds, J.R. (2000) Poly(3,4-ethylenedioxythiophene) and Its Derivatives: Past, Present, and Future. Advanced Materials, 12, 481-494.
http://dx.doi.org/10.1002/(SICI)1521-4095(200004)12:7<481::AID-ADMA481>3.0.CO;2-C
[19] Breiby, D.W., Samuelsen, L.B., Groenendaal, B. and Struth, B. (2003) Smectic Structures in Electrochemically Prepared Poly(3,4-ethylenedioxythiophene) Films. Journal of Polymer Science Part B: Polymer Physics, 41, 945-952.
http://dx.doi.org/10.1002/polb.10412
[20] Winther-Jensen, B. and West, K. (2006) Stability of Highly Conductive Poly-3,4-ethylene-dioxythiophene. Reactive and Functional Polymers, 66, 479-483.
http://dx.doi.org/10.1016/j.reactfunctpolym.2005.08.007
[21] Kros, A., Sommerdijk, N.A.J.M. and Nolte, R.J.M. (2005) Poly(pyrrole) versus Poly(3,4-ethylenedioxythiophene): Implications for Biosensor Applications. Sensors and Actuators B: Chemical, 106, 289-295.
http://dx.doi.org/10.1016/j.snb.2004.08.011
[22] Luo, S.C., Mohamed, A.E., Tansil, N.C., Yu, H.H., Gao, S., Kantchev, E.A. and Ying, J.Y. (2008) Poly(3,4-ethylene- dioxythiophene) (PEDOT) Nanobiointerfaces: Thin, Ultrasmooth, and Functionalized PEDOT Films with in Vitro and in Vivo Biocompatibility. Langmuir, 24, 8071-8077.
http://dx.doi.org/10.1021/la800333g
[23] Branzoi, F. and Branzoi, V. (2014) Enzymatic Electrode Obtained by Immobilizing of Urease into a Nanocomposite Film Based on Conducting Polymers and Different Additives. International Journal of Polymeric Materials and Polymeric Biomaterials, 63, 549-557.
[24] Tanguy, J., Slama, M., Hoclet, M. and Baudouin, J.L. (1989) Impedance Measurements on Different Conducting Poly- mers. Synthetic Metals, 28, 145-150.
http://dx.doi.org/10.1016/0379-6779(89)90512-2
[25] Sivakumar, R. and Saraswathi, R. (2003) Redox Properties of Poly(N-methylaniline). Synthetic Metals, 138, 381-390.
http://dx.doi.org/10.1016/S0379-6779(03)00023-7
[26] Branzoi, F., Branzoi, V. and Musina, A. (2012) Fabrication and Characterisation of Conducting Composite Films Based on Conducting Polymers and Functionalised Carbon Nanotubes. Surface and Interface Analysis, 44, 1076-1081.
[27] Ohsaka, T., Okajima, T. and Oyama, N. (1986) Anion-Exchange Properties of Polymer Films Prepared by Electrochemically Initiated Polymerization of N,N-Dialkyl Substituted Aniline Derivatives. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 200, 159-178.
http://dx.doi.org/10.1016/0022-0728(86)90053-7
[28] Otero, T.F. and De Laretta, E. (1988) Electrochemical Control of the Morphology, Adherence, Appearance and Growth of Polypyrrole Films. Synthetic Metals, 26, 79-88.
http://dx.doi.org/10.1016/0379-6779(88)90337-2
[29] Du, X. and Wang, Z. (2003) Effects of Polymerization Potential on the Properties of Electrosynthesized PEDOT Films. Electrochimica Acta, 48, 1713-1717.
http://dx.doi.org/10.1016/S0013-4686(03)00143-9
[30] Peng, C., Jin, J. and Chen, G.Z. (2007) A Comparative Study on Electrochemical Co-Deposition and Capacitance of Composite Films of Conducting Polymers and Carbon Nanotubes. Electrochimica Acta, 53, 525-537.
http://dx.doi.org/10.1016/j.electacta.2007.07.004
[31] Hong, J.-I., Yeo, I.-H. and Paik, W.-K. (2001) Conducting Polymer with Metal Oxide for Electrochemical Capacitor: Poly(3,4-ethylenedioxythiophene) RuOx Electrode. Journal of the Electrochemical Society, 148, A156-A163.
http://dx.doi.org/10.1149/1.1342166
[32] Du, X. and Wang, Z. (2003) Effects of Polymerization Potential on the Properties of Electrosynthesized PEDOT Films. Electrochimica Acta, 48, 1713-1717.
http://dx.doi.org/10.1016/S0013-4686(03)00143-9
[33] Li, L., Loveday, D.C., Mudigonda, D.S.K. and Ferraris, J.P. (2002) Effect of Electrolytes on Performance of Electrochemical Capacitors Based on Poly[3-(3,4-difluorophenyl)thiophene]. Journal of the Electrochemical Society, 149, A1201-A1207.
http://dx.doi.org/10.1149/1.1498840
[34] Branzoi, V., Prun, A. and Branzoi, F. (2008) Electrosynthesized Doped Polypyrrole Films on Pure Zinc Electrode. Molecular Crystal and Liquid Crystals, 485, 853-861.
http://dx.doi.org/10.1080/15421400801922486
[35] Branzoi, V., Branzoi, F. and Pilan, L. (2009) Characterization of Electrodeposited Polymeric and Composite Modified Electrodes on Cobalt Based Alloy. Materials Chemistry and Physics, 118, 197-203.
http://dx.doi.org/10.1016/j.matchemphys.2009.07.020
[36] Ago, H., Petritch, K., Shaffer, M.S.P. and Friend, R.H. (1999) Composites of Carbon Nanotubes and Conjugated Poly- mers for Photovoltaic Devices. Advanced Materials, 11, 1281-1285.
http://dx.doi.org/10.1002/(SICI)1521-4095(199910)11:15<1281::AID-ADMA1281>3.0.CO;2-6
[37] Peng, C., Jin, J. and Chen, G.Z. (2007) A Comparative Study on Electrochemical Co-Deposition and Capacitance of Composite Films of Conducting Polymers and Carbon Nanotubes. Electrochimica Acta, 53, 525-537.
http://dx.doi.org/10.1016/j.electacta.2007.07.004
[38] Wang, J., Dai, J. and Yarlagadda, T. (2005) Carbon Nanotube—Conducting-Polymer Composite Nanowires. Langmuir, 21, 9-12.
http://dx.doi.org/10.1021/la0475977
[39] Tsai, C., Li, S.C. and Liao, S.W. (2006) Electrodeposition of Polypyrrole-Multiwalled Carbon Nanotube-Glucose Oxi- dase Nanobiocomposite Film for the Detection of Glucose. Biosensors and Bioelectronics, 22, 495-500.
http://dx.doi.org/10.1016/j.bios.2006.06.009
[40] Chen, J., Hamon, M.A., Hu, H., Chen, Y., Rao, A.M., Eklund, P.C. and Haddon, R.C. (1998) Solution Properties of Single-Walled Carbon Nanotubes. Science, 282, 95-98.
http://dx.doi.org/10.1126/science.282.5386.95
[41] Chen, Y., Haddon, R.C., Fang, S., Rao, A.M., Eklund, P.C., Lee, W.H., Dickey, E.C., Grulke, E.A., Pendergrass, A. and Smalley, R.E. (1998) Chemical Attachment of Organic Functional Groups to Single-Walled Carbon Nanotube Material. Journal of Materials Research, 13, 2423-2431.
http://dx.doi.org/10.1557/JMR.1998.0337
[42] Holzinger, M., Vostrowsky, O., Hirsch, A., Hennrich, F., Kappes, M., Weiss, R. and Jellen, F. (2001) Sidewall Func- tionalization of Carbon Nanotubes. Angewandte Chemie International Edition, 40, 4002-4005.
http://dx.doi.org/10.1002/1521-3773(20011105)40:21<4002::AID-ANIE4002>3.0.CO;2-8
[43] Dyke, C.A. and Tour, J.M. (2003) Unbundled and Highly Functionalized Carbon Nanotubes from Aqueous Reactions. Nano Letters, 3, 1215-1218.
http://dx.doi.org/10.1021/nl034537x
[44] Saini, R.K., Chiang, I.W., Peng, H., Smalley, R.E., Billups, W.E., Hauge, R.H. and Margrave, J.L. (2003) Covalent Sidewall Functionalization of Single Wall Carbon Nanotubes. Journal of the American Chemical Society, 125, 3617- 3621.
[45] Dyke, C.A. and Tour, J.M. (2003) Solvent-Free Functionalization of Carbon Nanotubes. Journal of the American Che- mical Society, 125, 1156-1157.
http://dx.doi.org/10.1021/ja0289806
[46] Williams, K.A., Veenhuizen, P.T.M., de la Torre, B.G., Eritja, R. and Dekker, C. (2002) Nanotechnology: Carbon Nanotubes with DNA Recognition. Nature, 420, 761.
http://dx.doi.org/10.1038/420761a
[47] Niyogi, S., Hamon, M.A., Hu, H., Zhao, B., Bhowmik, P., Sen, R., Itkis, M.E. and Haddon, R.C. (2002) Chemistry of Single-Walled Carbon Nanotubes. Accounts of Chemical Research, 35, 1105-1113.
http://dx.doi.org/10.1021/ar010155r
[48] Kamaras, K., Itkis, M.E., Hu, H., Zhao, B. and Haddon, R.C. (2003) Covalent Bond Formation to a Carbon Nanotube Metal. Science, 301, 1501.
http://dx.doi.org/10.1126/science.1088083
[49] Chen, J., Rao, A.M., Lyuksyutov, S., Itkis, M.E., Hamon, M.A., Hu, H., Cohn, R.W., Eklund, D.T., Smalley, R. and Haddon, R.C. (2001) Dissolution of Full-Length Single-Walled Carbon Nanotubes. The Journal of Physical Chemistry B, 105, 2525-2528.
http://dx.doi.org/10.1021/jp002596i
[50] Zhao, B., Hu, H. and Haddon, R.C. (2004) Synthesis and Properties of a Water-Soluble Single-Walled Carbon Nano- tube—Poly(m-aminobenzene sulfonic acid) Graft Copolymer. Advanced Functional Materials, 14, 71-76.
http://dx.doi.org/10.1002/adfm.200304440
[51] Jurewiez, K., Delpeux, S., Bertagna, V. and Frackowiak, E. (2001) Supercapacitors from Nanotubes/Polypyrrole Com- posites. Chemical Physics Letters, 347, 36-40.
http://dx.doi.org/10.1016/S0009-2614(01)01037-5
[52] Gupta, V. and Miura, N. (2006) Polyaniline/Single-Wall Carbon Nanotube (PANI/SWCNT) Composites for High Per- formance Supercapacitors. Electrochimica Acta, 52, 1721-1726.
http://dx.doi.org/10.1016/j.electacta.2006.01.074
[53] Xiao, Q. and Zhou, X. (2003) The Study of Multiwalled Carbon Nanotube Deposited with Conducting Polymer for Supercapacitor. Electrochimica Acta, 48, 575-580.
http://dx.doi.org/10.1016/S0013-4686(02)00727-2
[54] Zeng, J.X., Wei, W.Z., Wu, L., Liu, X.Y., Liu, K. and Li, Y. (2006) Fabrication of Poly(toluidine blue O)/Carbon Nanotube Composite Nanowires and Its Stable Low-Potential Detection of NADH. Journal of Electroanalytical Chemistry, 595, 152-160.
http://dx.doi.org/10.1016/j.jelechem.2006.07.014
[55] Ferrer-Anglada, N., Kaempgen, M. and Roth, S. (2006) Transparent and Flexible Carbon Nanotube/Polypyrrole and Carbon Nanotube/Polyaniline pH Sensors. Physica Status Solidi B, 243, 3519-3523.
http://dx.doi.org/10.1002/pssb.200669220
[56] Santhosh, P., Manesh, K.M., Lee, K.-P. and Gopalan, A.I. (2006) Enhanced Electrocatalysis for the Reduction of Hydrogen Peroxide at New Multiwall Carbon Nanotube Grafted Polydiphenylamine Modified Electrode. Electroanaly- sis, 18, 894-903.
http://dx.doi.org/10.1002/elan.200503474
[57] Lu, G.W., Li, C., Shen, J.Y., Chen, Z.J. and Shi, G.Q. (2007) Preparation of Highly Conductive Gold—Poly(3,4- ethylenedioxythiophene) Nanocables and Their Conversion to Poly(3,4-ethylenedioxythiophene) Nanotubes. The Journal of Physical Chemistry C, 111, 5926-5931.
http://dx.doi.org/10.1021/jp070387t

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.