Share This Article:

Nanomedicine: Tiny Particles and Machines, from Diagnosis to Treatment of Cardiovascular Disease, Provides Huge Achievements

Abstract Full-Text HTML XML Download Download as PDF (Size:525KB) PP. 613-623
DOI: 10.4236/abb.2015.69064    4,452 Downloads   5,328 Views   Citations

ABSTRACT

Cardiovascular disease is one of many reverberating ailments that affect and kill hundreds of thousands of people around the world. To date treatments that offer improvement in the health condition of diseased people include the most promising nanomedicine although it is in its infancy, yet attaining attention from researchers of top notch day by day. In this current review importance is given on the application of nanomedicine in the diagnosis as well as treatment of cardiovascular disease.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Ismail, M. , Hossain, M. , Karim, M. and Shekhar, H. (2015) Nanomedicine: Tiny Particles and Machines, from Diagnosis to Treatment of Cardiovascular Disease, Provides Huge Achievements. Advances in Bioscience and Biotechnology, 6, 613-623. doi: 10.4236/abb.2015.69064.

References

[1] Kim, B.Y.S., Rutka, J.T. and Chan, W.C.W. (2010) Nanomedicine. New England Journal of Medicine, 363, 2434-2443.
http://dx.doi.org/10.1056/NEJMra0912273
[2] Bharali, D.J. and Mousa, S.A. (2010) Emerging Nanomedicines for Early Cancer Detection and Improved Treatment: Current Perspective and Future Promise. Pharmacology & Therapeutics, 128, 324-335.
http://dx.doi.org/10.1016/j.pharmthera.2010.07.007
[3] Sajja, H.K., East, M.P., Mao, H., Wang, Y.A., Nie, S. and Yang, L. (2009) Development of Multifunctional Nanoparticles for Targeted Drug Delivery and Noninvasive Imaging of Therapeutic Effect. Current Drug Discovery Technologies, 6, 43-51.
http://dx.doi.org/10.2174/157016309787581066
[4] Ledet, G. and Mandal, T.K. (2012) Nanomedicine: Emerging Therapeutics for the 21st Century. U.S. Pharmacist, 37, 7-11.
[5] Godin, B., Sakamoto, J.H., Serda, R.E., Grattoni, A., Bouamrani, A. and Ferrari, M. (2010) Emerging Applications of Nanomedicine for the Diagnosis and Treatment of Cardiovascular Diseases. Trends in Pharmacological Sciences, 31, 199-205.
http://dx.doi.org/10.1016/j.tips.2010.01.003
[6] Chhatriwalla, A.K. and Bhatt, D.L. (2008) Should Dual Anti-platelet Therapy after Drug-Eluting Stents Be Continued for More Than 1 Year? Circulation Cardiovascular Interventions, 1, 217-225.
http://dx.doi.org/10.1161/CIRCINTERVENTIONS.108.811380
[7] Galvin, P., Thompson, D., Ryan, K.B., McCarthy, A., Moore, A.C., Burke, C.S., et al. (2012) Nanoparticle-Based Drug Delivery: Case Studies for Cancer and Cardiovascular Applications. Cellular and Molecular Life Sciences, 69, 389-404.
http://dx.doi.org/10.1007/s00018-011-0856-6
[8] Bhaskar, S., Tian, F., Stoeger, T., Kreyling, W., de la Fuente, J.M., Grazú, V., et al. (2010) Multifunctional Nanocarriers for Diagnostics, Drug Delivery and Targeted Treatment Across Blood-Brain Barrier: Perspectives on Tracking and Neuroimaging. Particle and Fibre Toxicology, 7, 3.
http://dx.doi.org/10.1186/1743-8977-7-3
[9] World Health Organization (2011) Programmes and Projects: Global Atlas on Cardiovascular Disease Prevention and Control. World Health Organization, Geneva.
http://www.who.int/cardiovascular_diseases/en/
[10] Hoyert, D. and Xu, J. (2012) Deaths: Preliminary Data for 2011. National Vital Statistics Reports. National Center for Health Statistics, Hyattsville, 61, 1-65.
[11] Jemal, A., Siegel, R., Ward, E., Hao, Y., Xu, J. and Thun, M.J. (2009) Cancer Statistics, 2009. CA: A Cancer Journal for Clinicians, 59, 225-249.
http://dx.doi.org/10.3322/caac.20006
[12] Riehemann, K., Schneider, S.W., Luger, T.A., Godin, B., Ferrari, M. and Fuchs, H. (2009) Nanomedicine—Challenge and Perspectives. Angewandte Chemie International Edition, 48, 872-897.
http://dx.doi.org/10.1002/anie.200802585
[13] Peer, D., Karp, J.M., Hong, S., Farokhzad, O.C., Margalit, R. and Langer, R. (2007) Nanocarriers as an Emerging Platform for Cancer Therapy. Nature Nanotechnology, 2, 751-760.
http://dx.doi.org/10.1038/nnano.2007.387
[14] Ferrari, M. (2008) Nanogeometry: Beyond Drug Delivery. Nature Nanotechnology, 3, 131-132.
http://dx.doi.org/10.1038/nnano.2008.46
[15] Ferrari, M. (2005) Cancer Nanotechnology: Opportunities and Challenges. Nature Reviews Cancer, 5, 161-171.
http://dx.doi.org/10.1038/nrc1566
[16] Smith, R.C. and McCarthy, S. (1992) Physics of Magnetic Resonance. Journal of Reproductive Medicine, 37, 19-26.
[17] Sosnovik, D.E., Nahrendorf, M. and Weissleder, R. (2008) Magnetic Nanoparticles for MR Imaging: Agents, Techniques and Cardiovascular Applications. Basic Research in Cardiology, 103, 122-130.
http://dx.doi.org/10.1007/s00395-008-0710-7
[18] Pan, D., Senpan, A., Caruthers, S.D., Williams, T.A., Scott, M.J., Gaffney, P.J., et al. (2009) Sensitive and Efficient Detection of Thrombus with Fibrin-Specific Manganese Nanocolloids. Chemical Communications, 3234-3236.
http://dx.doi.org/10.1039/b902875g
[19] Michalet, X., Pinaud, F.F., Bentolila, L.A., Tsay, J.M., Doose, S., Li, J.J., et al. (2005) Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics. Science, 307, 538-544.
http://dx.doi.org/10.1126/science.1104274
[20] Serda, R.E., Godin, B., Tasciotti, E., Liu, X. and Ferrari, M. (2009) Mitotic Trafficking of Silicon Microparticles. Nanoscale, 1, 250-259.
http://dx.doi.org/10.1039/b9nr00138g
[21] Kooi, M.E., Cappendijk, V.C., Cleutjens, K.B., Kessels, A.G., Kitslaar, P.J., Borgers, M., et al. (2003) Accumulation of Ultrasmall Superparamagnetic Particles of Iron Oxide in Human Atherosclerotic Plaques Can Be Detected by in Vivo Magnetic Resonance Imaging. Circulation, 107, 2453-2458.
http://dx.doi.org/10.1161/01.CIR.0000068315.98705.CC
[22] Devaraj, N.K., Keliher, E.J., Thurber, G.M., Nahrendorf, M. and Weissleder, R. (2009) 18F Labeled Nanoparticles for in Vivo PET-CT Imaging. Bioconjugate Chemistry, 20, 397-401.
http://dx.doi.org/10.1021/bc8004649
[23] Nahrendorf, M., Zhang, H., Hembrador, S., Panizzi, P., Sosnovik, D.E., Aikawa, E., et al. (2008) Nanoparticle PET-CT Imaging of Macrophages in Inflammatory Atherosclerosis. Circulation, 117, 379-387.
http://dx.doi.org/10.1161/CIRCULATIONAHA.107.741181
[24] Chen, W., Vucic, E., Leupold, E., Mulder, W.J., Cormode, D.P., Briley-Saebo, K.C., et al. (2008) Incorporation of an apoE-Derived Lipopeptide in High-Density Lipoprotein MRI Contrast Agents for Enhanced Imaging of Macrophages in Atherosclerosis. Contrast Media & Molecular Imaging, 3, 233-242.
http://dx.doi.org/10.1002/cmmi.257
[25] Amirbekian, V., Lipinski, M.J., Briley-Saebo, K.C., Amirbekian, S., Aguinaldo, J.G., Weinreb, D.B., et al. (2007) Detecting and Assessing Macrophages in Vivo to Evaluate Atherosclerosis Noninvasively Using Molecular MRI. Proceedings of the National Academy of Sciences of the United States of America, 104, 961-966.
http://dx.doi.org/10.1073/pnas.0606281104
[26] Cyrus, T., Abendschein, D.R., Caruthers, S.D., Harris, T.D., Glattauer, V., Werkmeister, J.A., et al. (2006) MR Three-Dimensional Molecular Imaging of Intramural Biomarkers with Targeted Nanoparticles. Journal of Cardiovascular Magnetic Resonance, 8, 535-541.
http://dx.doi.org/10.1080/10976640600580296
[27] Botnar, R.M., Buecker, A., Wiethoff, A.J., Parsons Jr., E.C., Katoh, M., Katsimaglis, G., et al. (2004) In Vivo Magnetic Resonance Imaging of Coronary Thrombosis Using a Fibrin-Binding Molecular Magnetic Resonance Contrast Agent. Circulation, 110, 1463-1466.
http://dx.doi.org/10.1161/01.CIR.0000134960.31304.87
[28] Lanza, G.M., Trousil, R.L., Wallace, K.D., Rose, J.H., Hall, C.S., Scott, M.J., et al. (1998) In Vitro Characterization of a Novel, Tissue-Targeted Ultrasonic Contrast System with Acoustic Microscopy. The Journal of the Acoustical Society of America, 104, 3665-3672.
http://dx.doi.org/10.1121/1.423948
[29] Morawski, A.M., Winter, P.M., Crowder, K.C., Caruthers, S.D., Fuhrhop, R.W., Scott, M.J., et al. (2004) Targeted Nanoparticles for Quantitative Imaging of Sparse Molecular Epitopes with MRI. Magnetic Resonance in Medicine, 51, 480-486.
http://dx.doi.org/10.1002/mrm.20010
[30] Winter, P.M., Morawski, A.M., Caruthers, S.D., Fuhrhop, R.W., Zhang, H., Williams, T.A., et al. (2003) Molecular Imaging of Angiogenesis in Early-Stage Atherosclerosis with Alpha(v) Beta3-Integrin-Targeted Nanoparticles. Circulation, 108, 2270-2274.
http://dx.doi.org/10.1161/01.CIR.0000093185.16083.95
[31] Kao, C.Y., Hoffman, E.A., Beck, K.C., Bellamkonda, R.V. and Annapragada, A.V. (2003) Long-Residence-Time Nano-Scale Liposomal Iohexol for X-Ray-Based Blood Pool Imaging. Academic Radiology, 10, 475-483.
http://dx.doi.org/10.1016/S1076-6332(03)80055-7
[32] Mukundan Jr., S., Ghaghada, K.B., Badea, C.T., Kao, C.Y., Hedlund, L.W., Provenzale, J.M., et al. (2006) A Liposomal Nanoscale Contrast Agent for Preclinical CT in Mice. American Journal of Roentgenology, 186, 300-307.
http://dx.doi.org/10.2214/AJR.05.0523
[33] Christodoulides, N., Dharshan, P., Wong, J., Floriano, P.F., Neikirk, D. and McDevitt, J.T. (2007) A Microchip-Based Assay for Interleukin-6. Methods in Molecular Biology, 385, 131-144.
http://dx.doi.org/10.1007/978-1-59745-426-1_10
[34] Goodey, A., Lavigne, J.J., Savoy, S.M., Rodriquez, M.D., Curey, T., Tsao, A., et al. (2001) Development of Multianalyte Sensor Arrays Composed of Chemically Derivitized Polymeric Microspheres Localized in Micromachined Cavities. Journal of the American Chemical Society, 123, 2559-2570.
http://dx.doi.org/10.1021/ja003341l
[35] Christodoulides, N., Tran, M., Floriano, P.N., Rodriquez, M., Goodey, A., Ali, M., et al. (2002) A Microchip-Based Multianalyte Assay System for the Assessment of Cardiac Risk. Analytical Chemistry, 74, 3030-3036.
http://dx.doi.org/10.1021/ac011150a
[36] Ali, M.F., Kirby, R., Goodey, A.P., Rodriguez, M.D., Ellington, A.D., Neikirk, D.P., et al. (2003) DNA Hybridization and Discrimination of Singlenucleotide Mismatches Using Chip-Based Microbead Arrays. Analytical Chemistry, 75, 4732-4739.
http://dx.doi.org/10.1021/ac034106z
[37] Jokerst, J.V., Raamanathan, A., Christodoulides, N., Floriano, P.N., Pollard, A.A., Simmons, G.W., et al. (2009) Nano-Bio-Chips for High Performance Multiplexed Protein Detection: Determinations of Cancer Biomarkers in Serum and Saliva Using Quantum Dot Bioconjugate Labels. Biosensors and Bioelectronics, 24, 3622-3629.
http://dx.doi.org/10.1016/j.bios.2009.05.026
[38] Lavigne, J.J., Savoy, S., Clevenger, M.B., Ritchie, J.E., McDoniel, B., Yoo, S.J., et al. (1998) Solution-Based Analysis of Multiple Analytes by a Sensor Array: Toward the Development of an “Electronic Tongue”. Journal of the American Chemical Society, 120, 6429-6430.
http://dx.doi.org/10.1021/ja9743405
[39] Christodoulides, N., Floriano, P.N., Mohanty, S., Dharshan, P., Griffin, M., Lennart, A., et al. (2007) Lab-on-a-Chip Methods for Point of Care Measurements of Salivary Bio-markers of Periodontitis. Annals of the New York Academy of Sciences, 1098, 411-428.
http://dx.doi.org/10.1196/annals.1384.035
[40] Christodoulides, N., Mohanty, S., Miller, C.S., Langub, M.C., Floriano, P.N., Dharshan, P., et al. (2005) Application of Microchip Assay System for the Measurement of C-Reactive Protein in Human Saliva. Lab on a Chip, 5, 261-269.
http://dx.doi.org/10.1039/b414194f
[41] Christodoulides, N., Floriano, P.N., Sanchez, X., Li, L.Y., Hocquard, K., Patton, A., et al. (2012) Programmable Bio-Nanochip Technology for the Diagnosis of Cardiovascular Disease at the Point of Care. Methodist Debakey Cardiovascular Journal, 8, 6-12.
http://dx.doi.org/10.14797/mdcj-8-1-6
[42] Floriano, P.N., Christodoulides, N., Miller, C.S., Ebersole, J.L., Spertus, J., Rose, B.G., et al. (2009) Use of Saliva-Based Nano-Biochip Tests for Acute Myocardial Infarction at the Point of Care: A Feasibility Study. Clinical Chemistry, 55, 1530-1538.
http://dx.doi.org/10.1373/clinchem.2008.117713
[43] Vasan, R.S. (2006) Biomarkers of Cardiovascular Disease: Molecular Basis and Practical Considerations. Circulation, 113, 2335-2362.
http://dx.doi.org/10.1161/CIRCULATIONAHA.104.482570
[44] Danesh, J., Lewington, S., Thompson, S.G., Lowe, G.D., Collins, R., Kostis, J.B., et al. (2005) Plasma Fibrinogen Level and the Risk of Major Cardiovascular Diseases and Nonvascular Mortality: An Individual Participant Meta-Analysis. JAMA, 294, 1799-1809.
[45] Cushman, M., Lemaitre, R.N., Kuller, L.H., Psaty, B.M., Macy, E.M., Sharrett, A.R., et al. (1999) Fibrinolytic Activation Markers Predict Myocardial Infarction in the Elderly. The Cardiovascular Health Study. Arteriosclerosis, Thrombosis, and Vascular Biology, 19, 493-498.
http://dx.doi.org/10.1161/01.ATV.19.3.493
[46] Wang, T.J., Larson, M.G., Levy, D., Benjamin, E.J., Leip, E.P., Omland, T., et al. (2004) Plasma Natriuretic Peptide Levels and the Risk of Cardiovascular Events and Death. New England Journal of Medicine, 350, 655-663.
http://dx.doi.org/10.1056/NEJMoa031994
[47] Danesh, J., Wheeler, J.G., Hirschfield, G.M., Eda, S., Eiriksdottir, G., Rumley, A., et al. (2004) C-Reactive Protein and Other Circulating Markers of Inflammation in the Prediction of Coronary Heart Disease. New England Journal of Medicine, 350, 1387-1397.
http://dx.doi.org/10.1056/NEJMoa032804
[48] Mangoni, A.A. and Jackson, S.H. (2002) Homocysteine and Cardiovascular Disease: Current Evidence and Future Prospects. The American Journal of Medicine, 112, 556-565.
http://dx.doi.org/10.1016/S0002-9343(02)01021-5
[49] Gaspari, M., Cheng, M., Terracciano, R., Liu, X., Nijdam, A.J., Vaccari, L., et al. (2006) Nanoporous Surfaces as Harvesting Agents for Mass Spectrometric Analysis of Peptides in Human Plasma. Journal of Proteome Research, 5, 1261-1266.
http://dx.doi.org/10.1021/pr050417+
[50] Luchini, A., Geho, D.H., Bishop, B., Tran, D., Xia, C., Dufour, R.L., et al. (2008) Smart Hydrogel Particles: Biomarker Harvesting: One-Step Affinity Purification, Size Exclusion, and Protection against Degradation. Nano Letters, 8, 350-361.
http://dx.doi.org/10.1021/nl072174l
[51] Cui, Y., Wei, Q., Park, H. and Lieber, C.M. (2001) Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species. Science, 293, 1289-1292.
http://dx.doi.org/10.1126/science.1062711
[52] Yang, Z. and Zhou, D.M. (2006) Cardiac Markers and Their Point-of-Care Testing for Diagnosis of Acute Myocardial Infarction. Clinical Biochemistry, 39, 771-780.
http://dx.doi.org/10.1016/j.clinbiochem.2006.05.011
[53] Brogan Jr., G.X. and Bock, J.L. (1998) Cardiac Marker Point-of-Care Testing in the Emergency Department and Cardiac Care Unit. Clinical Chemistry, 44, 1865-1869.
[54] Park, J.S., Cho, M.K., Lee, E.J., Ahn, K.Y., Lee, K.E., Jung, J.H., et al. (2009) A Highly Sensitive and Selective Diagnostic Assay Based on Virus Nanoparticles. Nature Nanotechnology, 4, 259-264.
http://dx.doi.org/10.1038/nnano.2009.38
[55] Vogt, S., Troitzsch, D., Späth, S. and Moosdorf, R. (2004) Efficacy of Ion-Selective Probes in Early Epicardial in Vivo Detection of Myocardial Ischemia. Physiological Measurement, 25, N21-N26.
http://dx.doi.org/10.1088/0967-3334/25/6/N02
[56] Ji, T., Rai, P., Jung, S. and Varadan, V.K. (2008) In Vitro Evaluation of Flexible pH and Potassium Ion-Sensitive Organic Field Effect Transistor Sensors. Applied Physics Letters, 92, Article ID: 233304.
http://dx.doi.org/10.1063/1.2936296
[57] Barhoumi, H., Haddad, R., Maaref, A., Bausells, J., Bessueille, F., Léonard, D., et al. (2001) New Technology for Multi-Sensor Silicon Needles for Biomedical Applications. Sensors and Actuators B: Chemical, 78, 279-284.
http://dx.doi.org/10.1016/S0925-4005(01)00826-7
[58] Shin, K.H., Moon, C.R., Lee, T.H., Lim, C.H. and Kim, Y.J. (2005) Flexible Wireless Pressure Sensor Module. Sensors and Actuators A, 123-124, 30-35.
http://dx.doi.org/10.1016/j.sna.2005.01.008
[59] Kim, J.-H., Heller, D.A., Jin, H., Barone, P.W., Song, C., Zhang, J.Q., et al. (2009) The Rational Design of Nitric Oxide Selectivity in Single-Walled Carbon Nanotube Nearinfrared Fluorescence Sensors for Biological Detection. Nature Chemistry, 1, 473-481.
http://dx.doi.org/10.1038/nchem.332
[60] Lammers, T., Kiessling, F., Hennink, W.E. and Storm, G. (2010) Nanotheranostics and Image-Guided Drug Delivery: Current Concepts and Future Directions. Molecular Pharmaceutics, 7, 1899-1912.
http://dx.doi.org/10.1021/mp100228v
[61] Barenholz, Y. (2012) Doxil®—The First FDA-Approved Nano-Drug: Lessons Learned. Journal of Controlled Release, 160, 117-134.
http://dx.doi.org/10.1016/j.jconrel.2012.03.020
[62] Mufamadi, M.S., Pillay, V., Choonara, Y.E., Du Toit, L.C., Modi, G. and Naidoo, D. (2011) A Review on Composite Liposomal Technologies for Specialized Drug Delivery. Journal of Drug Delivery, 2011, Article ID: 939851.
http://dx.doi.org/10.1155/2011/939851
[63] Maurer, N., Fenske, D.B. and Cullis, P.R. (2001) Developments in Liposomal Drug Delivery Systems. Expert Opinion on Biological Therapy, 1, 923-947.
http://dx.doi.org/10.1517/14712598.1.6.923
[64] Immordino, M.L., Dosio, F. and Cattel, L. (2006) Stealth Liposomes: Review of the Basic Science, Rationale, and Clinical Applications, Existing and Potential. International Journal of Nanomedicine, 1, 297-315.
[65] Hedman, M., Hartikainen, J. and Syvanne, M. (2003) Safety and Feasibility of Catheter-Based Local Intracoronary Vascular Endothelial Growth Factor Gene Transfer in the Prevention of Postangioplasty and In-Stent Restenosis and in the Treatment of Chronic Myocardial Ischemia: Phase II Results of the Kuopio Angiogenesis Trial (KAT). Circulation, 107, 2677-2683.
http://dx.doi.org/10.1161/01.CIR.0000070540.80780.92
[66] Margolis, J., McDonald, J., Heuser, R., Klinke, P., Waksman, R., Virmani, R., et al. (2007) Systemic Nanoparticle Paclitaxel (Nab-Paclitaxel) for In-Stent Restenosis I (SNAPIST-I): A First-in-Human Safety and Dose-Finding Study. Clinical Cardiology, 30, 165-170.
http://dx.doi.org/10.1002/clc.20066
[67] McDowell, G., Slevin, M. and Krupinski, J. (2011) Nanotechnology for the Treatment of Coronary in Stent Restenosis: A Clinical Perspective. Vascular Cell, 3, 8.
http://dx.doi.org/10.1186/2045-824X-3-8
[68] Zhang, H., Li, N. and Sirish, P. (2012) The Cargo of CRPPR-Conjugated Liposomes Crosses the Intact Murine Cardiac Endothelium. Journal of Controlled Release, 163, 10-17.
http://dx.doi.org/10.1016/j.jconrel.2012.06.038
[69] Harel-Adar, T., Ben Mordechai, T., Amsalem, Y., Feinberg, M.S., Leor, J. and Cohen, S. (2011) Modulation of Cardiac Macrophages by Phosphatidylserine-Presenting Liposomes Improves Infarct Repair. Proceedings of the National Academy of Sciences of the United States of America, 108, 1827-1832.
http://dx.doi.org/10.1073/pnas.1015623108
[70] Dvir, T., Bauer, M., Schroeder, A., Tsui, J.H., Anderson, D.G., Langer, R., et al. (2011) Nanoparticles Targeting the Infarcted Heart. Nano Letters, 11, 4411-4444.
http://dx.doi.org/10.1021/nl2025882
[71] Lestini, B.J., Sagnella, S.M., Xu, Z., Shive, M.S., Richter, N.J., Jayaseharan, J., et al. (2002) Surface Modification of Liposomes for Selective Cell Targeting in Cardiovascular Drug Delivery. Journal of Controlled Release, 78, 235-247.
http://dx.doi.org/10.1016/S0168-3659(01)00505-3
[72] Holland, N.B., Qiu, Y., Ruegsegger, M. and Marchant, R.E. (1998) Biomimetic Engineering of Non-Adhesive Glycocalyx-Like Surfaces Using Oligosaccharide Surfactant Polymers. Nature, 392, 799-801.
http://dx.doi.org/10.1038/33894
[73] Zhu, J., Xue, J., Guo, Z., Zhang, L. and Marchant, R.E. (2007) Biomimetic Glycoliposomes as Nanocarriers for Targeting P-Selectin on Activated Platelets. Bioconjugate Chemistry, 18, 1366-1369.
http://dx.doi.org/10.1021/bc700212b
[74] Joner, M., Morimoto, K., Kasukawa, H., Steigarwald, K., Meri, S., Nakazawa, G., et al. (2008) Site-Specific Targeting of Nanoparticle Prednisolone Reduces In-Stent Restenosis in a Rabbit Model of Established Atheroma. Arteriosclerosis, Thrombosis, and Vascular Biology, 28, 1960-1966.
http://dx.doi.org/10.1161/ATVBAHA.108.170662
[75] Cho, B.H., Park, J.R., Nakamura, M.T., Odintsov, B.M., Wallig, M.A. and Chung, B.H. (2010) Synthetic Dimyristoylphosphatidylcholine Liposomes Assimilating into High-Density Lipoprotein Promote Regression of Atherosclerotic Lesions in Cholesterol-Fed Rabbits. Experimental Biology and Medicine, 235, 1194-1203.
http://dx.doi.org/10.1258/ebm.2010.009320
[76] Walton, B.L., Leja, M., Vickers, K.C., Estevez-Fernandez, M., Sanguino, A., Wang, E., et al. (2010) Delivery of Negatively Charged Liposomes into the Atheromas of Watanabe Heritable Hyperlipidemic Rabbits. Vascular Medicine, 15, 307-313.
http://dx.doi.org/10.1177/1358863X10374118
[77] Danenberg, H.D., Fishbein, I., Gao, J., Mönkkönen, J., Reich, R., Gati, I., et al. (2002) Macrophage Depletion by Clodronate-Containing Liposomes Reduces Neointimal Formation after Balloon Injury in Rats and Rabbits. Circulation, 106, 599-605.
http://dx.doi.org/10.1161/01.CIR.0000023532.98469.48
[78] Buxton, D.B. (2009) Nanomedicine for the Management of Lung and Blood Diseases. Nanomedicine, 4, 331-339.
http://dx.doi.org/10.2217/nnm.09.8
[79] Cyrus, T., Zhang, H., Allen, J.S., Williams, T.A., Hu, G., Caruthers, S.D., et al. (2008) Intramural Delivery of Rapamycin with Alphavbeta3-Targeted Paramagnetic Nanoparticles Inhibits Stenosis after Balloon Injury. Arteriosclerosis, Thrombosis, and Vascular Biology, 28, 820-826.
http://dx.doi.org/10.1161/ATVBAHA.107.156281
[80] Winter, P.M., Caruthers, S.D., Zhang, H., Williams, T.A., Wickline, S.A. and Lanza, G.M. (2008) Antiangiogenic Synergism of Integrin-Targeted Fumagillin Nanoparticles and Atorvastatin in Atherosclerosis. JACC: Cardiovascular Imaging, 1, 624-634.
http://dx.doi.org/10.1016/j.jcmg.2008.06.003
[81] Winter, P.M., Neubauer, A.M., Caruthers, S.D., Harris, T.D., Robertson, J.D., Williams, T.A., et al. (2006) Endothelial Alpha(v)Beta3 Integrin-Targeted Fumagillin Nanoparticles Inhibit Angiogenesis in Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 26, 2103-2109.
http://dx.doi.org/10.1161/01.ATV.0000235724.11299.76
[82] Hoffmann, R., Mintz, G.S., Dussaillant, G.R., Popma, J.J., Pichard, A.D., Satler, L.F., et al. (1996) Patterns and Mechanisms of In-Stent Restenosis. A Serial Intravascular Ultrasound Study. Circulation, 94, 1247-1254.
http://dx.doi.org/10.1161/01.CIR.94.6.1247
[83] Samaroo, H.D., Lu, J. and Webster, T.J. (2008) Enhanced Endothelial Cell Density on NiTi Surfaces with Sub-Micron to Nanometer Roughness. International Journal of Nanomedicine, 3, 75-82.
[84] Kastrati, A., Mehilli, J., Pache, J., Kaiser, C., Valgimigli, M., Kelbaek, H., et al. (2007) Analysis of 14 Trials Comparing Sirolimus-Eluting Stents with Bare-Metal Stents. New England Journal of Medicine, 356, 1030-1039.
http://dx.doi.org/10.1056/NEJMoa067484
[85] Lagerqvist, B., James, S.K., Stenestrand, U., Lindbäck, J., Nilsson, T., Wallentin, L., et al. (2007) Long-Term Outcomes with Drug-Eluting Stents versus Bare-Metal Stents in Sweden. New England Journal of Medicine, 356, 1009-1019.
http://dx.doi.org/10.1056/NEJMoa067722
[86] Mauri, L., Hsieh, W.H., Massaro, J.M., Ho, K.K., D’Agostino, R. and Cutlip, D.E. (2007) Stent Thrombosis in Randomized Clinical Trials of Drug-Eluting Stents. New England Journal of Medicine, 356, 1020-1029.
http://dx.doi.org/10.1056/NEJMoa067731
[87] Stone, G.W., Moses, J.W., Ellis, S.G., Schofer, J., Dawkins, K.D., Morice, M.C., et al. (2007) Safety and Efficacy of Sirolimus- and Paclitaxel-Eluting Coronary Stents. New England Journal of Medicine, 356, 998-1008.
http://dx.doi.org/10.1056/NEJMoa067193
[88] Wieneke, H., Dirsch, O., Sawitowski, T., Gu, Y.L., Brauer, H., Dahmen, U., et al. (2003) Synergistic Effects of a Novel Nanoporous Stent Coating and Tacrolimus on Intima Proliferation in Rabbits. Catheterization and Cardiovascular Interventions, 60, 399-407.
http://dx.doi.org/10.1002/ccd.10664
[89] Bhargava, B., Reddy, N.K., Karthikeyan, G., Raju, R., Mishra, S., Singh, S., et al. (2006) A Novel Paclitaxel-Eluting Porous Carbon-Carbon Nanoparticle Coated, Nonpolymeric Cobalt-Chromium Stent: Evaluation in a Porcine Model. Catheterization and Cardiovascular Interventions, 67, 698-702.
http://dx.doi.org/10.1002/ccd.20698
[90] Ayon, A.A., Cantu, M., Chava, K., Agrawal, C.M., Feldman, M.D., Johnson, D., et al. (2006) Drug Loading of Nanoporous TiO2 Films. Biomedical Materials, 1, L11-L15.
http://dx.doi.org/10.1088/1748-6041/1/4/L01
[91] Liu, D.M., Yang, Q. and Troczynski, T. (2002) Sol-Gel Hydroxyapatite Coatings on Stainless Steel Substrates. Biomaterials, 23, 691-698.
http://dx.doi.org/10.1016/S0142-9612(01)00157-0
[92] Caves, J.M. and Chaikof, E.L. (2006) The Evolving Impact of Microfabrication and Nanotechnology on Stent Design. Journal of Vascular Surgery, 44, 1363-1368.
http://dx.doi.org/10.1016/j.jvs.2006.08.046

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.