Share This Article:

Characterizing the Effect of Static Magnetic Fields on C. elegans Using Microfluidics

Abstract Full-Text HTML XML Download Download as PDF (Size:1150KB) PP. 583-591
DOI: 10.4236/abb.2015.69061    2,836 Downloads   3,513 Views   Citations

ABSTRACT

In nature, several organisms possess a magnetic compass to navigate or migrate them to desired locations. It is thought that these organisms may use biogenic magnetic matter or light-sensitive photoreceptors to sense and orient themselves in magnetic fields. To unravel the underlying principles of magnetosensitivity and magnetoreception, previous experiments have been conducted on bacteria, vertebrates, crustaceans, and insects. In this study, the model organism, C. elegans, is used to test their response and sensitivity to static magnetic fields in the range of 5 milli Tesla to 120 milli Tesla. Single wild-type C. elegans are put in microfluidic channels and exposed to permanent magnets for five cycles of thirty-second time intervals. The worm movement is recorded and analyzed with custom software to calculate the average velocity and the percentage of turning and curling. Contrary to some published studies, our results did not show a significant difference compared to control experiments. This suggests that C. elegans may not sense static magnetic fields in the range of field strengths that we tested.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Njus, Z. , Feldmann, D. , Brien, R. , Kong, T. , Kalwa, U. and Pandey, S. (2015) Characterizing the Effect of Static Magnetic Fields on C. elegans Using Microfluidics. Advances in Bioscience and Biotechnology, 6, 583-591. doi: 10.4236/abb.2015.69061.

References

[1] von Middendorf, A. (1855) Die Isepiptesen Russlands. Mem. Acad. Sci. St Petersbourg VI, Ser. Tome, 8, 1-143.
[2] Viguier, C. (1882) Le sens de l’orientation et ses organes chez les animaux et chez l’homme. Rev. phil. France Etranger, 14, 1-36.
[3] Wiltschko, W. and Wiltschko, R. (1996) Magnetic Orientation in Birds. Journal of Experimental Biology, 199, 29-38.
[4] Keeton, W.T. (1971) Magnets Interfere with Pigeon Homing. Proceedings of the National Academy of Sciences of the United States of America, 68, 102-106.
http://dx.doi.org/10.1073/pnas.68.1.102
[5] Wiltschko, W. (1968) über den Einfluß statischer Magnetfelder auf die Zugorientierung der Rotkehlchen (Erithacus rubecula). Zeitschrift für Tierpsychologie, 25, 537-558.
http://dx.doi.org/10.1073/pnas.68.1.102
[6] Wiltschko, W. (1978) Further Analysis of the Magnetic Compass of Migratory Birds. In: Animal Migration, Navigation and Homing, Springer Verlag, New York, 302-310.
http://dx.doi.org/10.1007/978-3-662-11147-5_29
[7] Wiltschko, W. and Wiltschko, R. (2005) Magnetic Orientation and Magnetoreception in Birds and Other Animals. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 191, 675-693.
http://dx.doi.org/10.1007/s00359-005-0627-7
[8] Boles, L.C. and Lohmann, K.J. (2003) True Navigation and Magnetic Maps in Spiny Lobsters. Nature, 421, 60-63.
http://dx.doi.org/10.1038/nature01226
[9] Marhold, S., Wiltschko, W. and Burda, H. (1997) A Magnetic Polarity Compass for Direction Finding in a Subterranean Mammal. Naturwissenschaften, 84, 421-423.
http://dx.doi.org/10.1007/s001140050422
[10] Kirschvink, J.L. and Gould, J.L. (1981) Biogenic Magnetite as a Basis for Magnetic Field Detection in Animals. BioSystems, 13, 181-201.
http://dx.doi.org/10.1016/0303-2647(81)90060-5
[11] Heyers, D., Zapka, M., Hoffmeister, M., Wild, J.M. and Mouritsen, H. (2010) Magnetic Field Changes Activate the Trigeminal Brainstem Complex in a Migratory Bird. Proceedings of the National Academy of Sciences of the United States of America, 107, 9394-9399.
http://dx.doi.org/10.1073/pnas.0907068107
[12] Treiber, C., Salzer, M., Riegler, J., Edelman, N., Sugar, C., Breuss, M., et al. (2012) Clusters of Iron-Rich Cells in the Upper Beak of Pigeons Are Macrophages Not Magnetosensitive Neurons. Nature, 484, 367-370.
http://dx.doi.org/10.1038/nature11046
[13] Blakemore, R. (1975) Magnetotactic Bacteria. Science, 190, 377-379.
http://dx.doi.org/10.1126/science.170679
[14] Gegear, R.J., Foley, L.E., Casselman, A. and Reppert, S.M. (2010) Animal Cryptochromes Mediate Magnetoreception by an Unconventional Photochemical Mechanism. Nature, 463, 804-807.
http://dx.doi.org/10.1038/nature08719
[15] Guerra, P.A., Gegear, R.J. and Reppert, S.M. (2014) A Magnetic Compass Aids Monarch Butterfly Migration. Nature Communica-tions, 5, 4164.
http://dx.doi.org/10.1038/ncomms5164
[16] Gegear, R.J., Casselman, A., Waddell, S. and Reppert, S.M. (2008) Cryptochrome Mediates Light-Dependent Magnetosensitivity in Drosophila. Nature, 454, 1014-1018.
http://dx.doi.org/10.1038/nature07183
[17] Liedvogel, M. and Mouritsen, H. (2010) Cryptochromes—A Potential Magnetoreceptor: What Do We Know and What Do We Want to Know? Journal of the Royal Society Interface, 7, S147-S162.
http://dx.doi.org/10.1098/rsif.2009.0411.focus
[18] Kaletta, T. and Hengartner, M.O. (2006) Finding Function in Novel Targets: C. elegans as a Model Organism. Nature Reviews Drug Discovery, 5, 387-399.
http://dx.doi.org/10.1038/nrd2031
[19] Li, S., Armstrong, C.M., Bertin, N., Ge, H., Milstein, S., Boxem, M., et al. (2004) A Map of the Interactome Network of the Metazoan C. elegans. Science, 303, 540-543.
http://doi.org/10.1126/science.1091403
[20] White, J.G., Southgate, E., Thomson, J.N. and Brenner, S. (1986) The Structure of the Nervous System of the Nematode Caenorhabditis elegans. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 314, 1-340.
http://dx.doi.org/10.1098/rstb.1986.0056
[21] Cranfield, C.G., Dawe, A., Karloukovski, V., Dunin-Borkowski, R.E., de Pomerai, D. and Dobson, J. (2004) Biogenic Magnetite in the Nematode Caenorhabditis elegans. Proceedings of the Royal Society of London B: Biological Sciences, 271, S436-S439.
http://dx.doi.org/10.1098/rsbl.2004.0209
[22] Bessho, K., Yamada, S., Kunitani, T., Nakamura, T., Hashiguchi, T., Tanimoto, Y., et al. (1995) Biological Responses in Caenorhabditis elegans to High Magnetic Fields. Experientia, 51, 284-288.
http://dx.doi.org/10.1007/BF01931113
[23] Miyakawa, T., Yamada, S., Harada, S., Ishimori, T., Yamamoto, H. and Hosono, R. (2001) Exposure of Caenorhabditis elegans to Extremely Low Frequency High Magnetic Fields Induces Stress Responses. Bioelectromagnetics, 22, 333-339.
http://dx.doi.org/10.1002/bem.58
[24] Lee, C.-H., Chen, H.-M., Yeh, L.-K., Hong, M.-Y. and Huang, G.S. (2012) Dosage-Dependent Induction of Behavioral Decline in Caenorhabditis elegans by Long-Term Treatment of Static Magnetic Fields. Journal of Radiation Research, 53, 24-32.
http://dx.doi.org/10.1269/jrr.11057
[25] Hung, Y.-C., Lee, J.-H., Chen, H.-M. and Huang, G.S. (2010) Effects of Static Magnetic Fields on the Development and Aging of Caenorhabditis elegans. Journal of Experimental Biology, 213, 2079-2085.
http://dx.doi.org/10.1242/jeb.039768
[26] Pichler, P. (2011) A Screen for Magnetosensitive Nematodes. E-Thesis, University of Vienna, Vienna.
[27] Garcia, E., Racioppo, P., Niizawa, S., Zedwick, J., Mendoza, S. and Arisaka, K. (2014) Search for Magnetotaxis in Caenorhabdits elegans. Poster Presented at UCLA Science Poster Day, Los Angeles.
[28] Saldanha, J., Parashar, A., Pandey, S. and Powell-Coffman, J. (2013) Multiparameter Behavioral Analyses Provide Insights to Mechanisms of Cyanide Resistance in Caenorhabditis elegans. Toxicological Sciences, 135, 156-168.
http://dx.doi.org/10.1093/toxsci/kft138

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.