Share This Article:

Mixed Saddle Point and Its Equivalence with an Efficient Solution under Generalized (V, p)-Invexity

Abstract Full-Text HTML XML Download Download as PDF (Size:298KB) PP. 1630-1637
DOI: 10.4236/am.2015.69145    3,437 Downloads   3,788 Views   Citations

ABSTRACT

The purpose of this paper is to define the concept of mixed saddle point for a vector-valued Lagrangian of the non-smooth multiobjective vector-valued constrained optimization problem and establish the equivalence of the mixed saddle point and an efficient solution under generalized (V, p)-invexity assumptions.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Kumar, A. and Garg, P. (2015) Mixed Saddle Point and Its Equivalence with an Efficient Solution under Generalized (V, p)-Invexity. Applied Mathematics, 6, 1630-1637. doi: 10.4236/am.2015.69145.

References

[1] Jeyakumar, V. and Mond, B. (1992) On Generalised Convex Mathematical Programming. Journal of the Australian Mathematical Society Series B, 34, 43-53.
http://dx.doi.org/10.1017/S0334270000007372
[2] Mishra, S.K. and Mukherjee, R.N. (1996) On Generalised Convex Multi-Objective Nonsmooth Programming. Journal of the Australian Mathematical Society Series B, 38, 140-148.
http://dx.doi.org/10.1017/S0334270000000515
[3] Liu, J.C. (1996) Optimality and Duality for Generalized Fractional Programming Involving Nonsmooth Pseudoinvex Functions. Journal of Mathematical Analysis and Applications, 202, 667-685.
http://dx.doi.org/10.1006/jmaa.1996.0341
[4] Jeyakumar, V. (1985) Strong and Weak Invexity in Mathematical Programming. Mathematical Methods of Operations Research, 55, 109-125.
[5] Jeyakumar, V. (1988) Equivalence of Saddle-Points and Optima, and Duality for a Class of Non-Smooth Non-Covex Problems. Journal of Mathematical Analysis and Applications, 130, 334-344.
http://dx.doi.org/10.1016/0022-247X(88)90309-5
[6] Bector, C.R. (1996) Wolfe-Type Duality Involving (B, η)-Invex Functions for a Minmax Programming Problem. Journal of Mathematical Analysis and Applications, 201, 114-127.
http://dx.doi.org/10.1006/jmaa.1996.0245
[7] Kuk, H., Lee, G.M. and Kim, D.S. (1998) Nonsmooth Multiobjective Programs with V-p-Invexity. Indian Journal of Pure and Applied Mathematics, 29, 405-412.
[8] Bhatia, D. and Garg, P.K. (1998) (V, p)-Invexity and Non-Smooth Multiobjective Programming. RAIRO-Operations Research, 32, 399-414.
[9] Bhatia, G. (2008) Optimality and Mixed Saddle Point Criteria Multiobjective Optimization. Journal of Mathematical Analysis and Applications, 342, 135-145.
http://dx.doi.org/10.1016/j.jmaa.2007.11.042
[10] Antczak, T. (2015) Saddle Point Criteria and Wolfe Duality in Nonsmooth Φ, p-Invex Vector Optimization Problems with Inequality and Equality Constraints. International Journal of Computer Mathematics, 92, 882-907.
http://dx.doi.org/10.1080/00207160.2014.925191
[11] Gutierrez, C., Hueraga, L. and Novo, V. (2012) Scalarization and Saddle Points of Approximate Proper Solutions in Nearly Subconvexlike Vector Optimization Problems. Journal of Mathematical Analysis and Applications, 389, 1046-1058.
http://dx.doi.org/10.1016/j.jmaa.2011.12.050
[12] Chen, G.-Y. (1997) Lagrangian Multipliers, Saddle Points, and Duality in Vector Optimization of Set-Valued Maps. Journal of Mathematical Analysis and Applications, 215, 297-316.
http://dx.doi.org/10.1006/jmaa.1997.5568
[13] Arrow, K.J., Gould, F.J. and Howe, S.M. (1973) A General Saddle Point Result for Constrained Optimization. Mathematical Programming, 5, 225-234.
http://dx.doi.org/10.1007/BF01580123
[14] Reddy, L.V. and Mukherjee, R.N. (1999) Composite Nonsmooth Multiobjective Programs with V-p-Invexity. Journal of Mathematical Analysis and Applications, 235, 567-577.
http://dx.doi.org/10.1006/jmaa.1999.6409
[15] Yuan, D., Liu, X. and Lai, G. (2012) Nondifferentiable Mathematical Programming Involving (G, β)-Invexity. Journal of Inequalities and Applications, 256, 01-17.
http://dx.doi.org/10.1186/1029-242x-2012-256

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.