Share This Article:

Optical Properties of Silver Nanoparticles for Surface Plasmon Resonance (SPR)-Based Biosensor Applications

Abstract Full-Text HTML XML Download Download as PDF (Size:764KB) PP. 1071-1076
DOI: 10.4236/jmp.2015.68111    3,428 Downloads   4,271 Views   Citations

ABSTRACT

It has been successfully carried out the synthesis of silver nanoparticles by chemical reduction method. Silver nitrate (AgNO3) is used as the metal precursor and trisodium citrate as the reducing agent as well as the use of polyvinyl alcohol (PVA) as a stabilizer. The formation of silver nanoparticles was observed visually with discoloration (yellow). To excite surface plasmons, attenuated total reflection (ATR) method is used with Krestchmann configuration of the prism coupling. The maximum absorption band in the UV-Vis spectrometer shows a red shift of 429.43 nm wavelength for a colloidal solution of silver nanoparticles without PVA and 429.01 nm with PVA. The addition of PVA sharpened absorption spectrum curve and produce a broad absorption band which is indicative of a smaller particle size. TEM images showed that the morphology (crystallites) silver nanoparticles have nearly spherical geometry with dispersive particle distribution. Dispersibility of nanoparticles such as this could potentially be used as an active ingredient of SPR biosensor. The observation of the SPR phenomenon shows the SPR angle shift of 0.1° when a thin layer of silver as an active ingredient a biosensor coated with silver nanoparticles and 0.2° when silver nanoparticles with PVA. SPR angle shift and increase the reflectance values caused by changes in surface Plasmon, which can be a reference that the SPR phenomenon with the sensing surface modification using an additional layer of silver nanoparticles can increase sensitivity.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Mahmudin, L. , Suharyadi, E. , Utomo, A. and Abraha, K. (2015) Optical Properties of Silver Nanoparticles for Surface Plasmon Resonance (SPR)-Based Biosensor Applications. Journal of Modern Physics, 6, 1071-1076. doi: 10.4236/jmp.2015.68111.

References

[1] Wang, Q., Yang, X. and Wang, K. (2007) Sensors and Actuators, 123, 227-232.
http://dx.doi.org/10.1016/j.snb.2006.08.012
[2] Spadavecchia, J., Manera, M.G., Quaranta, F., Siciliano, P. and Rella, R. (2005) Biosensors and Bioelectronics, 21, 894-900. http://dx.doi.org/10.1016/j.bios.2005.02.016
[3] Pan, S., Xu, J., Shu, Y., Wang, F., Xia, W., Ding, Q., Xu, T., et al. (2010) Biosensors and Bioelectronics, 26, 850-853. http://dx.doi.org/10.1016/j.bios.2010.08.007
[4] Ritzefeld, M. and Sewald, N. (2012) Journal of Amino Acids, 2012, Article ID: 816032.
http://dx.doi.org/10.1155/2012/816032
[5] Henn, C., Boettcher, S., Steinbach, A. and Hartmann, R.W. (2012) Analytical Biochemistry, 428, 28-30.
http://dx.doi.org/10.1016/j.ab.2012.05.024
[6] Kausaite-minkstimiene, A., Ramanaviciene, A. and Ramanavicius, A. (2009) Analyst, 134, 2051-2057.
http://dx.doi.org/10.1039/b907315a
[7] Buhl, A., Page, S., Heegaard, N.H.H., Von Landenberg, P. and Luppa, P.B. (2009) Biosensors and Bioelectronics, 25, 198-203. http://dx.doi.org/10.1016/j.bios.2009.06.037
[8] Ananthanawat, C., Vilaivan, T., Mekboonsonglarp, W. and Hoven, V.P. (2009) Biosensors and Bioelectronics, 24, 3544-3549. http://dx.doi.org/10.1016/j.bios.2009.05.011
[9] Evanoff Jr., D.D. and Chumanov, G. (2005) Small, 29634, 1221-1231.
http://dx.doi.org/10.1002/cphc.200500113
[10] Kvítek, O., Siegel, J., Hnatowicz, V. and Svorcík, V. (2013) Journal of Nanomaterials, 2013, 1-15.
http://dx.doi.org/10.1155/2013/743684
[11] Jain, P.K., Huang, X., El-Sayed, I.H. and El-Sayed, M.A. (2008) Accounts of Chemical Research, 41, 1578-1586.
[12] Yan, N., Xiao, C. and Kou, Y. (2010) Coordination Chemistry Reviews, 254, 1179-1218.
http://dx.doi.org/10.1016/j.ccr.2010.02.015
[13] Yougen, H., Tao, Z., Pengli, Z. and Rong, S. (2012) Colloid and Polymer Science, 290, 401-409.
http://dx.doi.org/10.1007/s00396-011-2555-0
[14] Chen, Y. and Ming, H. (2012) Review Literature and Arts of the Americas, 2, 37-49.
[15] Agata, R.D., Corradini, R., Ferretti, C., Zanoli, L., Gatti, M., Marchelli, R. and Spoto, G. (2010) Biosensors and Bioelectronics, 25, 2095-2100. http://dx.doi.org/10.1016/j.bios.2010.02.008
[16] Jiang, G.Q., Baba, A., Ikarashi, H., Xu, R.S., Locklin, J., Kashif, K.R., et al. (2007) The Journal of Physical Chemistry C, 111, 18687-18694. http://dx.doi.org/10.1021/jp075986e
[17] Berglind, E., Thylen, L. and Liu, L. (2010) IET Optoelectronics, 4, 1-16.
http://dx.doi.org/10.1049/iet-opt.2008.0045
[18] Singh, K.N., Alqudami, A., Subaramanian, A., Sharma, V. and Muralidhar, K. (2009) AIP Conference Proceedings, 1147, 331-338. http://dx.doi.org/10.1063/1.3183453
[19] Wu, B. and Wang, Q.K. (2009) Optica Applicata, 39, 31-41.
[20] Pyatenko, A., Yamaguchi, M. and Suzuki, M. (2007) The Journal of Physical Chemistry C, 111, 7910-7917. http://dx.doi.org/10.1021/jp071080x
[21] Ghodselahi, T., Neishaboory, T. and Vesaghi, M.A. (2011) Biosensors, 2, 59-61.
[22] Tran, Q.H., Nguyen, V.Q. and Le, A. (2013) Advances in Natural Sciences: Nanoscience and Nanotechnology, 4, 1-20. http://dx.doi.org/10.1088/2043-6262/4/3/033001
[23] El-Nour, K.M.M.A., Al-Warthan, A. and Ammar, R.A.A. (2010) Arabian Journal of Chemistry, 3, 135-140.
http://dx.doi.org/10.1016/j.arabjc.2010.04.008
[24] Guzmán, M.G., Dille, J. and Godet, S. (2008) World Academy of Science, Engineering and Technology, 43, 357-364.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.