Share This Article:

Magnetic Moment of Photon

Abstract Full-Text HTML XML Download Download as PDF (Size:335KB) PP. 937-947
DOI: 10.4236/jmp.2015.67098    3,080 Downloads   3,429 Views   Citations
Author(s)    Leave a comment

ABSTRACT

We have calculated the intrinsic magnetic moment of a photon through the intrinsic magnetic moment of a gamma photon created as a result of the electron-positron annihilation with the angular frequency ω. We show that a photon propagating in z direction with an angular frequency ω carries a magnetic moment of μz = ±(ec/ω) along the propagation direction. Here, the (+) and (-) signs stand for the right hand and left circular helicity respectively. Because of these two symmetric values of the magnetic moment, we expect a splitting of the photon beam into two symmetric subbeams in a Stern-Gerlach experiment. The splitting is expected to be more prominent for low energy photons. We believe that the present result will be helpful for understanding the recent attempts on the Stern-Gerlach experiment with slow light and the behavior of the dark polaritons and also the atomic spinor polaritons.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Saglam, Z. and Sahin, G. (2015) Magnetic Moment of Photon. Journal of Modern Physics, 6, 937-947. doi: 10.4236/jmp.2015.67098.

References

[1] Saglam, M. and Sahin, G. (2009) International Journal of Modern Physics B, 23, 4977-4985.
http://dx.doi.org/10.1142/S0217979209053862
[2] Zeeman, P. (1897) Nature, 55, 357.
[3] Karpa, L. and Weitz, M. (2008) New Journal of Physics, 10, Article ID: 045015.
http://dx.doi.org/10.1088/1367-2630/10/4/045015
[4] Karpa, L. and Weitz, M. (2007) IEEE, 17, 1.
[5] Karpa, L. and Weitz, M. (2006) Nature Physics, 2, 332-335. http://dx.doi.org/10.1038/nphys284
[6] Gerlach, W. and Stern, O. (1922) Zeitschrift für Physik, 9, 353-355.
http://dx.doi.org/10.1007/BF01326984
[7] Sidles, J.A. (1992) Physical Review Letters, 68, 1124. http://dx.doi.org/10.1103/PhysRevLett.68.1124
[8] Einstein, A. Podolsky, B. and Rosen, N. (1935) Physical Review, 47, 777.
http://dx.doi.org/10.1103/PhysRev.47.777
[9] Bohr, N. (1935) Physical Review, 48, 696. http://dx.doi.org/10.1103/PhysRev.48.696
[10] Schrödinger, E. (1935) Proceeding of the Cambridge Philosophical Society, 31, 555-563.
http://dx.doi.org/10.1017/S0305004100013554
[11] Von Neumann, J. (1955) Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton.
[12] Bohm, D. and Aharonov, Y. (1957) Physical Review, 108, 1070-1076.
http://dx.doi.org/10.1103/PhysRev.108.1070
[13] Bell, J.S. (1964) Physics, 1, 195-200.
[14] Trimmer, J.D. (1980) Proceeding of the American Philosophical Society, 124, 323-328.
[15] Fine, A. (1982) Physical Review Letters, 48, 291-295. http://dx.doi.org/10.1103/PhysRevLett.48.291
[16] Fine, A. (1996) The Shaky Game: Einstein, Realism and the Quantum Theory. 2nd Edition, University of Chicago Press, Chicago. http://dx.doi.org/10.7208/chicago/9780226923260.001.0001
[17] London, F. (1950) Superfluids. John Wiley and Sons, New York.
[18] Onsager, L. (1954) General Discussion on Superconductivity. Proceeding of the International Conference on Theoretical Physics, Science Council of Japan, Tokyo, 935-936.
[19] Saglam, M. and Boyacioglu, B. (2002) International Journal of Modern Physics B, 16, 607-614.
http://dx.doi.org/10.1142/S0217979202010038
[20] Wan, K.K. and Saglam, M. (2006) International Journal of Theoretical Physics, 45, 1132-1151. http://dx.doi.org/10.1007/s10773-006-9118-z
[21] Yilmaz, O., Saglam, M. and Aydin, Z.Z. (2007) Old and New Concepts of Physics, 4, 141-152.
http://dx.doi.org/10.2478/v10005-007-0007-x
[22] Slater, J.C. (1930) Physical Review, 36, 57-64.
http://dx.doi.org/10.1103/PhysRev.36.57

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.