Design of Reflective, Photonic Shields for Atmospheric Reentry

Abstract

We present the design of one-dimensional photonic crystal structures, which can be used as omnidirectional reflecting shields against radiative heating of space vehicles entering the Earth’s atmosphere. This radiation is approximated by two broad bands centered at visible and nearinfrared energies. We applied two approaches to find structures with the best omnidirectional reflecting performance. The first approach is based on a band gap analysis and leads to structures composed of stacked Bragg mirrors. In the second approach, we optimize the structure using an evolutionary strategy. The suggested structures are compared with a simple design of two stacked Bragg mirrors. Choice of the constituent materials for the layers as well as the influence of interlayer diffusion at high temperatures are discussed.

Share and Cite:

N. Komarevskiy, V. Shklover, L. Braginsky, C. Hafner, O. Fabrichnaya, S. White and J. Lawson, "Design of Reflective, Photonic Shields for Atmospheric Reentry," Journal of Electromagnetic Analysis and Applications, Vol. 3 No. 6, 2011, pp. 228-237. doi: 10.4236/jemaa.2011.36037.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] V. Shklover, L. Braginsky, G. Witz, M. Mishrikey and C. Hafner, “High-Temperature Photonic Structures. Thermal Barrier Coatings, Infrared Sources and Other Applications,” Journal of Computational and Theoretical Nanoscience, Vol. 5, 2008, pp. 862-893.
[2] C. Johnston, B. Hollis and K. Sutton, “Spectrum Modeling for Air Shock-Layer Radiation at Lunar-Return Conditions,” Journal of Spacecraft and Rockets, Vol. 45, No. 5, 2008, pp. 865-878. doi:10.2514/1.33004
[3] D. Bose, E. McCorkle, C. Thompson, D. Bogdanoff, D. Prabhu, G. Allen and J. Grinstead, “Analysis and Model Validation of Shock Layer Radiation in Air,” VKI LS Course on Hypersonic Entry and Cruise Vehicles, Palo Alto, 2008.
[4] C. Johnston, “A Comparison of EAST Shock-Tube Radiation Measurements with a New Air Radiation Model,” AIAA Paper 1245, 2008.
[5] J. Grinstead, M. Wilder, J. Olejniczak, D. Bogdanoff, G. Allen, K. Dang and M. Forrest, “Shock-Heated Air Radiation Measurements at Lunar Return Conditions,” AIAA Paper 1244, 2008.
[6] [Online]. Available: http://www.sopra-sa.com/.
[7] S. Venkataraj, R. Drese, C. Liesch, O. Kappertz, R. Jayavel and M. Wuttig, “Temperature Stability of Sputtered Niobium—Oxide Films,” Journal of Applied Physics, Vol. 91, No. 4863, 2002, pp. 61-68. doi:10.1063/1.1458052
[8] Y. Fink, J. Winn, S. Fan, C. Chen, J. Michel, J. Joannopoulos and E. Thomas, “A Dielectric Omnidirectional Reflector,” Science, Vol. 282, No. 5394, 1998, p. 1679-1682.doi:10.1126/science.282.5394.1679
[9] E. Yablonovitch, “Engineered Omnidirectional External-Reflectivity Spectra from One-Dimensional Layered Interference Filters,” Optics Letters, Vol. 23, No. 21, 1998, pp. 1648-1649. doi:10.1364/OL.23.001648
[10] D. Chigrin, A. Lavrinenko, D. Yarotsky and S. Gaponenko, “Observation of Total Omnidirectional Reflection from a One-Dimensional Dielectric Lattice,” Applied Physics A: Materials Science & Processing, Vol. 68, No. 1, 1999, pp. 25-28. doi:10.1007/s003390050849
[11] P. Yeh, “Optical Waves in Layered Media,” John Wiley & Sons, New York, 1988.
[12] F. Kartner, N. Matuschek, T. Schibli, U. Keller, H. Haus, C. Heine, R. Morf, V. Scheuer, M. Tilsch and T. Tschudi, “Design and Fabrication of Double-Chirped Mirrors,” Optics Letters, Vol. 22, No. 11, 1997, pp. 831-833. doi:10.1364/OL.22.000831
[13] T. Yonte, J. Monz′on, A. Felipe and L. S′anchez-Soto, “Optimizing Omnidirectional Reflection by Multilayer Mirrors,” Journal of Optics A: Pure and Applied Optics, Vol. 6, No. 1, 2004, pp. 127-131. doi:10.1088/1464-4258/6/1/023
[14] M. del Rio and G. Pareschi, “Global Optimization and Reflectivity Data Fitting for X-Ray Multilayer Mirrors by Means of Genetic Algorithms,” Proceedings of SPIE, Vol. 4145, No. 88, 2001. doi:10.1117/12.411624
[15] S. Martin, J. Rivory and M. Schoenauer, “Synthesis of Optical Multilayer Systems Using Genetic Algorithms,” Applied Optics, Vol. 34, No. 13, 1995, pp. 2247-2254. doi:10.1364/AO.34.002247
[16] J. Joannopoulos, S. Johnson, J. Winn and R. Meade, “Photonic Crystals: Molding the Flow of Light,” Princeton University, Princeton, 2008).
[17] A. Fallahi, M. Mishrikey, C. Hafner and R. Vahldieck, “Efficient Procedures for the Optimization of Frequency Selective Surfaces,” IEEE Transactions on Antennas and Propagation, Vol. 56, No. 5, 2008, p. 1340. doi:10.1109/TAP.2008.922678
[18] C. Hafner, C. Xudong, J. Smajic and R. Vahldieck, “Efficient Procedures for the Optimization of Defects in Photonic Crystal Structures,” Journal of the Optical Society of America A, Vol. 24, No. 4, 2007, pp. 1177-1188. doi:10.1364/JOSAA.24.001177
[19] A. Kaiser, M. Lobert and R. Telle, “Thermal Stability of Zircon (ZrSiO4),” Journal of the European Ceramic Society, Vol. 28, No. 11, 2008, pp. 2199-2211. doi:10.1016/j.jeurceramsoc.2007.12.040
[20] W. Butterman and W. Foster, “Zircon Stability and the Zr02-Si02 Phase Diagram,” American Mineralogist, Vol. 52, 1967, pp. 880-885.
[21] D. Kamaev, S. Archugov and G. Mikhailov, “Study and Thermodynamic Analysis of the Zro 2-Sio 2 System,” Russian Journal of Applied Chemistry, Vol. 78, No. 2, 2005, pp. 200-203. doi:10.1007/s11167-005-0259-2
[22] F. B’ejina and O. Jaoul, “Silicon Diffusion in Silicate Minerals,” Earth and Planetary Science Letters, Vol. 153, No. 3-4, 1997, pp. 229-238. doi:10.1016/S0012-821X(97)00190-8
[23] D. Tsoukalas, C. Tsamis and P. Normand, “Diffusivity measurements of Silicon in Silicon Dioxide Layers Using Isotopically Pure Material,” Journal of Applied Physics, Vol. 89, No. 12, 2001, pp. 7809-7813. doi:10.1063/1.1371003
[24] D. Cherniak, “Si Diffusion in Zircon,” Physics and Chemistry of Minerals, Vol. 35, No. 4, 2008, pp. 179-187. doi:10.1007/s00269-007-0210-6
[25] H. Drings, U. Brossmann, H. Carstanjen, A. Szokefalvi-Nagy, C. Noll and H. Schaefer, “Enhanced 95Zr Diffusion in Grain Boundaries of Nano-Crystalline ZrO2 9.5 mol% Y2O3,” Physica Status Solidi (A), Vol. 206, No. 1, 2008, pp. 54-58. doi:10.1002/pssa.200824077
[26] L. Braginsky and V. Shklover, “Light Propagation in an Imperfect Photonic Crystal,” Physical Review B, Vol. 73, no. 8, 2006, Article ID: 85107. doi:10.1103/PhysRevB.73.085107
[27] E. Baskin and L. Braginsky, “Short-Wavelength Phonon Emission from a Metal-Semiconductor Interface,” Physical Review B, Vol. 50, No. 16, 1994, pp. 12191-12194. doi:10.1103/PhysRevB.50.12191
[28] L. Braginsky and V. Shklover, “Influence of Interface Structure on Transversal Electron Transport,” Solid State Communications, Vol. 105, No. 11, 1998, pp. 701-704. doi:10.1016/S0038-1098(97)10209-5

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.