Share This Article:

Critical Theory of Two-Dimensional Mott Transition: Integrability and Hilbert Space Mapping

Abstract Full-Text HTML XML Download Download as PDF (Size:268KB) PP. 634-639
DOI: 10.4236/jmp.2015.65069    2,488 Downloads   2,806 Views   Citations

ABSTRACT

We reconsider the Mott transition in the context of a two-dimensional fermion model with density-density coupling. We exhibit a Hilbert space mapping between the original model and the Double Lattice Chern-Simons theory at the critical point by use of the representation theory of the q-oscillator and Weyl algebras. The transition is further characterized by the ground state modification. The explicit mapping provides a new tool to further probe and test the detailed physical properties of the fermionic lattice model considered here and to enhance our understanding of the Mott transition(s).

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Bottesi, F. and Zemba, G. (2015) Critical Theory of Two-Dimensional Mott Transition: Integrability and Hilbert Space Mapping. Journal of Modern Physics, 6, 634-639. doi: 10.4236/jmp.2015.65069.

References

[1] Bottesi, F.L. and Zemba, G.R. (2011) Annals of Physics, 326, 1916-1940.
http://dx.doi.org/10.1016/j.aop.2011.04.010
[2] Georges, A., Kotliar, G., Krauth, W. and Rosenberg, M. (1996) Reviews of Modern Physics, 68, 13.
[3] Polchinski, J. (1992) Effective Field Theory and the Fermi Surface. Lectures TASI, arXiv: hep-th/9210046.
[4] Sergeev, S.M. (2006) International Journal of Mathematics and Mathematical Sciences, 2006, Article ID: 92064.
http://dx.doi.org/10.1155/IJMMS/2006/92064
[5] Fradkin, E. (1989) Physical Review Letters, 63, 322.
http://dx.doi.org/10.1103/PhysRevLett.63.322
[6] Zamolodchikov, A. (1981) Communications in Mathematical Physics, 79, 489.
http://dx.doi.org/10.1007/BF01209309
[7] Shankar, R. (1990) International Journal of Modern Physics, B4, 2371.
http://dx.doi.org/10.1142/S0217979290001121
[8] Sergeev, S. (2006) Physics Letters, A357, 417-419.
http://dx.doi.org/10.1016/j.physleta.2006.04.089
[9] Bazhanov, V.V. and Sergeev, S.M. (2006) Journal of Physics, A39, 3295.
http://dx.doi.org/10.1088/0305-4470/39/13/009
[10] Kuniba, A., Okado, M. and Sergeev, S. (2015) Tetrahedron Equation and Generalized Quantum Groups. arXiv: 1503.08536 [math.QA].
Bazhanov, V.V. and Sergeev, S.M. (2015) Yang-Baxter Maps, Discrete Integrable Equations and Quantum Groups. arXiv: 1501.06984 [math-ph].
Kuniba, A., Okado, M. and Sergeev, S. (2015) Letters in Mathematical Physics, 105, 447-461.
Mangazeev, V.V., Bazhanov, V.V. and Sergeev, S.M. (2013) Journal of Physics, A46, 465206.
[11] Korepanov, I.G. (1995) Algebraic Integrable Dynamical Systems, 2+1-Dimensional Models in Wholly Discrete Space-Time, and Inhomogeneous Models in 2-Dimensional Statistical Physics. arXiv: solv-int/9506003.
[12] Grensing, G. (1998) Physics Letters, B419, 258.
http://dx.doi.org/10.1016/S0370-2693(97)01459-7
[13] Bos, M. and Nair, V.P. (1990) International Journal of Modern Physics, A5, 959.
http://dx.doi.org/10.1142/S0217751X90000453
[14] Trugengerber, C.A. (1994-1995) Topics in Planar Gauge Theories. Lausanne U.
[15] Witten, E. (1989) Communications in Mathematical Physics, 121, 351.
http://dx.doi.org/10.1007/BF01217730

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.