Share This Article:

A Novel One-Pot and Efficient Procedure for Synthesis of New Fused Uracil Derivatives for DNA Binding

Abstract Full-Text HTML Download Download as PDF (Size:539KB) PP. 37-47
DOI: 10.4236/ijoc.2015.51005    3,838 Downloads   4,804 Views   Citations

ABSTRACT

Hydrazinolysis of 6-chloro-1-methyluracil followed by condensation of the product with different aromatic aldehyde gives the respective hydrazones which undergoes oxidative cyclization using thionyl chloride to obtain pyrazolo[3,4-d]pyrimidines in good yields. On the other hand, nitrosation of 6-aminouracils followed by the reaction with different arylidineanilines gives new xanthine derivatives. Finally, indenopyrrolopyrimidine and indenopteridine are obtained in good yields via the reaction of 6-aminouracils and 5,6-diaminouracil with ninhydrin respectively. The newly synthesized compounds show binding, chelation and fragmentation of the nucleic acid DNA.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Mousa, B. , Bayoumi, A. , Korraa, M. , Assy, M. and El-Kalyoubi, S. (2015) A Novel One-Pot and Efficient Procedure for Synthesis of New Fused Uracil Derivatives for DNA Binding. International Journal of Organic Chemistry, 5, 37-47. doi: 10.4236/ijoc.2015.51005.

References

[1] Brown, D.J. (1984) Pyrimidines and Their Benzo Derivatives. Comprehensive Heterocyclic Chemistry, 3, 57-155.
http://dx.doi.org/10.1016/B978-008096519-2.00035-7
[2] Wamhoff, H., Dzenis, J. and Hirota, K. (1992) Uracils: Versatile Starting Materials in Heterocyclic Synthesis. Advances in Heterocyclic Chemistry, 55, 129-259.
http://dx.doi.org/10.1016/S0065-2725(08)60222-6
[3] González-Vallinas, M., Molina, S., Vicente, G., de la Cueva, A., Vargas, T., Santoyo, S., García-Risco, M.R., Fornari, T., Reglero, G. and de Molina, A.R. (2013) Antitumor Effect of 5-Fluorouracil Is Enhanced by Rosemary Extract in Both Drug Sensitive and Resistant Colon Cancer Cells. Pharmacological Research, 72, 61-68.
http://dx.doi.org/10.1016/j.phrs.2013.03.010
[4] Innominato, P.F., Lévi, F.A. and Bjarnason, G.A. (2010) Chronotherapy and the Molecular Clock: Clinical Implications in Oncology. Advanced Drug Delivery Reviews, 62, 979-1001.
http://dx.doi.org/10.1016/j.addr.2010.06.002
[5] Isanbor, C. and O’Hagan, D. (2006) Fluorine in Medicinal Chemistry: A Review of Anti-Cancer Agents. Journal of Fluorine Chemistry, 127, 303-319.
http://dx.doi.org/10.1016/j.jfluchem.2006.01.011
[6] Muzzalupo, R., Tavano, L. and La Mesa, C. (2013) Alkyl Glucopyranoside-Based Niosomes Containing Methotrexate for Pharmaceutical Applications: Evaluation of Physico-Chemical and Biological Properties. International Journal of Pharmaceutics, 458, 224-229.
http://dx.doi.org/10.1016/j.ijpharm.2013.09.011
[7] Wu, Z.Q., Shah, A., Patel, N. and Yuan, X.D. (2010) Development of Methotrexate Proline Prodrug to Overcome Resistance by MDA-MB-231 Cells. Bioorganic Medicinal Chemistry Letters, 20, 5108-5112.
http://dx.doi.org/10.1016/j.bmcl.2010.07.024
[8] Pectasides, D., Pectasides, E., Papaxoinis, G., Xiros, N., Kamposioras, K., Tountas, N. and Economopoulos, T. (2010) Methotrexate, Paclitaxel, Ifosfamide, and Cisplatin in Poor-Risk Nonseminomatous Germ Cell Tumors. Urologic Oncology: Seminars and Original Investigations, 28, 617-623.
http://dx.doi.org/10.1016/j.urolonc.2008.10.013
[9] Banerjee, D., Mayer-Kuckuk, P., Capiaux, G., Budak-Alpdogan, T., Gorlick, R. and Bertino, J.R. (2002) Novel Aspects of Resistance to Drugs Targeted to Dihydrofolate Reductase and Thymidylate Synthase. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1587, 164-173.
http://dx.doi.org/10.1016/S0925-4439(02)00079-0
[10] Mackey, J.R., Baldwin, S.A., Young, J.D. and Cass, C.E. (1998) Nucleoside Transport and Its Significance for Anticancer Drug Resistance. Drug Resistance Updates, 1, 310-324.
http://dx.doi.org/10.1016/S1368-7646(98)80047-2
[11] Marques, S.M., Enyedy, E.A., Supuran, C.T., Krupenko, N.I., Krupenko, S.A. and Santos, M.A. (2010) Pteridine-Sulfonamide Conjugates as Dual Inhibitors of Carbonic Anhydrases and Dihydrofolate Reductase with Potential Antitumor Activity. Bioorganic & Medicinal Chemistry, 18, 5081-5089.
http://dx.doi.org/10.1016/j.bmc.2010.05.072
[12] Mauritz, R., Peters, J., Priest, D.G., Assaraf, Y.G., Drori, S., Kathmann, I., Noordhuis, P., Bunni, M.A., Rosowsky, A., Schornagel, J.H., Pinedo, H.M. and Jansen, G. (2002) Multiple Mechanisms of Resistance to Methotrexate and Novel Antifolates in Human CCRF-CEM Leukemia Cells and Their Implications for Folate Homeostasis. Biochemical Pharmacology, 63, 105-115.
http://dx.doi.org/10.1016/S0006-2952(01)00824-3
[13] Gangjee, A., Adair, O. and Queener, S.F. (1999) Pneumocystis carinii and Toxoplasma gondii Dihydrofolate Reductase Inhibitors and Antitumor Agents:? Synthesis and Biological Activities of 2,4-Diamino-5-methyl-6-[(monosubstituted anilino)methyl]pyrido[2,3-d]pyrimidines. Journal of Medicinal Chemistry, 42, 2447-2455.
http://dx.doi.org/10.1021/jm990079m
[14] Elnagdi, M.H., Al-Awadi, N. and Erian, A.N. (1996) In Compensative Heterocyclic Chemistry II. In: Katritzky, A.R., Rees, C.W. and Scriven, E.F.V., Eds., Pergamon Press, Oxford, 431-488.
[15] Rashad, A.E., Mahmoud, A.E. and Ali, M.M. (2011) Synthesis and Anticancer Effects of Some Novel Pyrazolo[3,4-d]-pyrimidine Derivatives by Generating Reactive Oxygen Species in Human Breast Adenocarcinoma Cells. European Journal of Medicinal Chemistry, 46, 1019-1026.
http://dx.doi.org/10.1016/j.ejmech.2011.01.013
[16] Elnagdi, M.H., Elmoghayar, M.R.H. and Elgemeie, G.F. (1987) Chemistry of Pyrazolo-Pyrimidines. Advances in Heterocyclic Chemistry, 41, 319-376.
http://dx.doi.org/10.1016/S0065-2725(08)60164-6
[17] Zatloukal, M., Jorda, R., Gucky, T., Reznícková, E., Voller, J., Pospísil, T., Malínková, V., Adamcová, V., Krystof, V. and Strnad, M. (2013) Synthesis and in Vitro Biological Evaluation of 2,6,9-Trisubstituted Purines Targeting Multiple Cyclin-Dependent Kinases. European Journal of Medicinal Chemistry, 61, 61-72.
http://dx.doi.org/10.1016/j.ejmech.2012.06.036
[18] Kumar, A., Sinha, S. and Chauhan, P.M. (2012) Synthesis of Novel Antimycobacterial Combinatorial Libraries of Structurally Diverse Substituted Pyrimidines by Three Component Solid Phase Reactions. Bioorganic Medicinal Chemistry Letters, 12, 667-669.
http://dx.doi.org/10.1016/S0960-894X(01)00829-0
[19] Baraldi, P.G., Pavani, M.G., Nunez, M., Brigid, P., Vitali, B., Gambari, R. and Romagnoli, R. (2002) Antimicrobial and Antitumor Activity of n-Heteroimmine-1,2,3-dithiazoles and Their Transformation in Triazolo-, Imidazo-, and Pyrazolopirimidines. Bioorganic Medicinal Chemistry, 10, 449-456.
http://dx.doi.org/10.1016/S0968-0896(01)00294-2
[20] Nasr, M.N. and Gineinah, M.M. (2002) Pyrido[2, 3-d]pyrimidines and Pyrimido[5’,4’:5, 6]pyrido[2, 3-d]pyrimidines as New Antiviral Agents: Synthesis and Biological Activity. Archiv der Pharmazie, 335, 289-295.
http://dx.doi.org/10.1002/1521-4184(200208)335:6<289::AID-ARDP289>3.0.CO;2-Z
[21] Nagarapu, L., Vanaparthi, S., Bantu, V. and Kumar, C.G. (2013) Synthesis of Novel Benzo[4,5]thiazolo[1,2- a]pyrimi- dine-3-carboxylate Derivatives and Biological Evaluation as Potential Anticancer Agents. European Journal of Medicinal Chemistry, 69, 817-822.
http://dx.doi.org/10.1016/j.ejmech.2013.08.024
[22] Sondhi, S.M., Johar, M., Rajvanshi, S., Dastidar, S.G., Shukla, R., Raghubir, R., et al. (2001) Anticancer, Antiinflammatory and Analgesic Activity Evaluation of Heterocyclic Compounds Synthesized by the Reaction of 4-Isothiocyanato- 4-methylpentan-2-one with Substituted o-Phenylenediamines, o-Diaminopyridine and (Un)Substituted o. Australian Journal of Chemistry, 54, 69-74.
http://dx.doi.org/10.1071/CH00141
[23] Youssif, S. and Assy, M. (1996) Fervenulin, 4-Deazafervenulin and 5-Deazaalloxazines Analogue: Synthesis and Antimicrobial Activity. Journal of Chemical Research, 442, 2546.
[24] Herrmann, M., Lorenz, H.M., Voll, R., Grünke, M., Woith, W. and Kalden, J.R. (1994) A Rapid and Simple Method for the Isolation of Apoptotic DNA Fragments. Nucleic Acids Research, 22, 5506-5507.
http://dx.doi.org/10.1093/nar/22.24.5506
[25] Ishikawa, I., Itoh, T., Melik-Ohanjanian, R.G., Takayangi, H., Mizunc, Y. and Ogura, H. (1990) Synthesis and X-Ray Analysis of 1-Benzyl-6-chlorouracil. Heterocycles, 31, 1641-1646.
http://dx.doi.org/10.3987/COM-90-5472
[26] Cresswell, R.M. and Wood, H.C.S. (1960) The Biosynthesis of Pteridines. Part I. The Synthesis of Riboflavin. Journal of the Chemical Society, 4768-4775.
[27] Youssif, S. and Pfleiderer, W. (1998) Purines XIV.[1]. Reactivity of 8-Bromo-3,9-dimethylxanthine towards Some Nucleophilic Reagents. Journal of Heterocyclic Chemistry, 35, 949-954.
http://dx.doi.org/10.1002/jhet.5570350428
[28] Youssif, S. (1997) DMF Acetals as Alkylating and Cyclizing Agents: A Facile Route to Substituted Pyrazolo[3,4-d] pyrimidine-4,6(5H,7H)-diones. Chemical Monthly, 128, 493-501.
http://dx.doi.org/10.1007/BF00806857
[29] Hutzenlaub, W. and Pfleiderer, W. (1979) Purines, XIII. Simplified Syntheses of 7-Methy- and 1,7-Dimethylxanthines and Uric Acids. Liebigs Annalen der Chemie, 1847-1854.
[30] Youssif, S. (2004) 6-Aminouracil as Precursors for the Synthesis of Fused Di- and Tricyclic Pyrimidines. Journal of Chemical Research, 341-343.
[31] Youssif, S. and Ageli, F. (2008) One-Pot Synthesis of Fused 2-Thiouracils: Pyrimidopyrimidines, Pyridopyrimidines and Imidazolopyrimidines. Zeitschrift für Naturforschung, 63b, 860-864.
[32] Peet, N.P., Huber, E.W. and Huffman, J.C. (1995) Reaction of Ninhydrin with β-Dicarbonyl Compounds. Journal of Heterocyclic Chemistry, 32, 33-41.
http://dx.doi.org/10.1002/jhet.5570320106
[33] Prabhakar, K.R., Veerapur, V.P., Bansal, P., Vipan, K.P., Reddy, K.M., Barik, A., Reddy, B.K.D., Reddanna, P., Priyadarsini, K.I. and Unnikrishnan, M.K. (2006) Identification and Evaluation of Antioxidant, Analgesic/Anti-Inflammatory Activity of the Most Active Ninhydrin-Phenol Adducts Synthesized. Bioorganic & Medicinal Chemistry, 14, 7113-7120.
http://dx.doi.org/10.1016/j.bmc.2006.06.068
[34] Klumpp, D.A., Fredrick, S., Lau, S., Jin, K.K., Bau, R., Prakash, G.K.S. and Olah, G.A. (1999) Acid-Catalyzed Condensations of Ninhydrin with Aromatic Compounds. Preparation of 2,2-Diaryl-1,3-indanediones and 3-(Diarylmethylene)-isobenzofuranones. The Journal of Organic Chemistry, 64, 5152-5155.
http://dx.doi.org/10.1021/jo990197h
[35] Ruttink, J. (1946) Investigations in the Purine Series. II. Synthesis of Some Purine Derivatives. Recueil des Travaux Chimiques, 65, 751-767.
http://dx.doi.org/10.1002/recl.19460651007
[36] Blicke, F.F. and Godt, H.C. (1954) Reactions of 1,3-Dimethyl-5,6-diaminouracil. Journal of the American Chemical Society, 76, 2798-2800.
http://dx.doi.org/10.1021/ja01639a058
[37] Bredereck, H. and Edenhofer, A. (1955) Synthesen in der Purinreihe, VI. Mitteil.1): Synthesen mit 4- und 5-Aminouracil. Chemische Berichte, 88, 1306-1312.
http://dx.doi.org/10.1002/cber.19550880825

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.