Share This Article:

Gas-Dust Protoplanetary Disc: Modeling Collisional Interaction of Primordial Bodies

Abstract Full-Text HTML Download Download as PDF (Size:648KB) PP. 181-193
DOI: 10.4236/jmp.2015.63024    2,318 Downloads   2,682 Views   Citations

ABSTRACT

One of the key problems in the concept of planetary systems origin and early evolution is solid bodies formation in the protoplanetary gas-dust disc around young stars. Dust particles interactions inside the original fluffy dust clusters of fractal nature resulted from gravitational instability and fragmentation in the disc’s central plane areassumed as the most plausible mechanism of primary bodies set up owing to particles integration within the clusters. Follow upcollisions are regarded to be responsible for eventual growth of primary bodies to the size of planetesimals. We discuss this scenario including chemical nature of particles depending on the disc’s radial temperature distribution and phase transitions. The mathematical model is developed based on the method of penetrating particles with the account for internal structure/properties of bodies involved, complicated patterns of their interaction, and phenomenological approach to describe energy distribution in the contact zone. The model is mainly addressed to the stage of formed solid bodies collisions. The results of numerical evaluation of the model are described involving some constraints for complete or partial destruction of colliding bodies followed by either scattering of collisional fragments orpartial back accumulation.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Marov, M. and Rusol, A. (2015) Gas-Dust Protoplanetary Disc: Modeling Collisional Interaction of Primordial Bodies. Journal of Modern Physics, 6, 181-193. doi: 10.4236/jmp.2015.63024.

References

[1] Marov, M.Ya. (2014) Fundamentals of the Modern Astophysics: From the Home Planet to Space Frontiers. Springer.
[2] Marov, M.Ya. (2005) Adv.in Phys. Sci. (Uspechi Phys. Nauk), 175, 668-678.
[3] Marov, M.Ya., Kolesnichenko, A.V., Makalkin, A.B., Dorofeeva, V.A., Ziglina, I.N. and Chernov, A.V. (2011) From the Protosolar Cloud to the Planetary System: A Model for the Evolution of the Gas-Dust Disk. In: Galimov, E.M., Ed., Problems of Biosphere Origin and Evolution, Nova Publishers, 319-404.
[4] Kolesnichenko, A.V. and Marov, M.Ya. (2012) Solar System Research, 46.
[5] Kolesnichenko, A.V. and Marov, M.Ya. (2014) Solar System Research, 48, 354-365.
http://dx.doi.org/10.1134/S0038094614050037
[6] Reipurth, B., Jewitt, D. and Keil, K., Eds. (2007) Protostars and Planets V. University of Arizona Press, Tucson.
[7] Shukolyukov, A. and Lugmair, G.W. (2003) Chronology of Asteroid Accretion and Differentiation. In: Bottke, W., Cellino, A., Paolicchi, P. and Binzel, R.P., Eds., Asteroids III, University of Arizona Press, Tucson, 687-695.
[8] Connelly, J.N., Bizzarro, M., Krot, A.N., Nordlund, A., Wielandt, D. and Ivanova, M.A. (2012) Science, 38, 651.
http://dx.doi.org/10.1126/science.1226919
[9] de Pater, I. and Lissauer, J.J. (2004) Planetary Sciences. Cambridge University Press, Cambridge.
[10] Cassen, P. (1994) Icarus, 112, 405-429.
http://dx.doi.org/10.1006/icar.1994.1195
[11] Cassen, P. (2001) Meteoritics & Planetary Science, 36, 671-700.
http://dx.doi.org/10.1111/j.1945-5100.2001.tb01908.x
[12] Makalkin, A.B. (2004) Solar System Research, 38, 491-507.
http://dx.doi.org/10.1007/s11208-005-0021-6
[13] Ruzmaikina, T.V. and Makalkin, A.B. (1991) Formation and Evolution of the Protoplanetary Disk. In: Donahue, T.M., Ed., Planetary Sciences: American and Soviet Research, National Academies Press, Washington DC, 44-60.
[14] Eisner, J.A., Hillenbrand, L.A., Carpenter, J.M. and Wolf, S. (2005) The Astrophysical Journal, 635, 396-421.
http://dx.doi.org/10.1086/497161
[15] White, R.J., Greene, T.P., Doppmann, G.W., et al. (2007) Stellar Properties of Embedded Protostars. In: Reipurth, B., Jewitt, D. and Keil, K., Eds., Protostars and Planets V, University of Arizona Press, Tucson, 117-132.
[16] Beckwith, S.V.W. and Sargent, A.I. (1996) Nature, 383, 139-144.
http://dx.doi.org/10.1038/383139a0
[17] Cieza, L.A., Kessler-Silacci, J.E., Jaffe, D.T., Harvey, P.M. and Evans II, N.J. (2005) The Astrophysical Journal, 635, 422-441.
http://dx.doi.org/10.1086/497325
[18] Haisch, K.E., Lada, E.A. and Lada, C.J. (2001) The Astrophysical Journal, 553, L153-L156.
http://dx.doi.org/10.1086/320685
[19] Beckwith, S.V.W., Henning, T. and Nakagawa, Y. (2000) Dust Properties and Assembly of Large Particles in Protoplanetary Disks. In: Mannings, V., Boss, A.P. and Rassell, S.S., Eds., Protostars and Planets IV, University of Arizona Press, Tucson, 533-558.
[20] Natta, A., Testi, L., Calvet, N., et al. (2007) Dust in Proto-Planetary Disks: Properties and Evolution. In: Reipurth, B., Jewitt, D. and Keil, K., Eds., Protostars and Planets V, University of Arizona Press, Tucson, 767-781.
[21] Alexander, R.D., Clarke, C.J. and Pringle, J.E. (2006) Monthly Notices of the Royal Astronomical Society, 369, 229-239.
http://dx.doi.org/10.1111/j.1365-2966.2006.10294.x
[22] Lodders, K. (2003) The Astrophysical Journal, 591, 1220-1247.
http://dx.doi.org/10.1086/375492
[23] Palme, H. and Boyton, W.V. (1993) Meteoritic Constraints on Conditions in the Solar Nebula. In: Levy, E.H. and Lunine, J.I., Eds., Protostars and Planets III, University of Arizona Press, Tucson, 979-1004.
[24] Saxena, S.K. and Eriksson, G. (1986) Chemistry of the Formation of Terrestrial Planets. In: Saxena, S.K., Ed., Chemistry and Physics of Terrestrial Planets (Advances in Physical Geochemistry), Volume 6, Springer, New York, 30-105.
[25] Petaev, M.I. and Wood, J.A. (1998) Meteoritics & Planetary Science, 33, 1123-1137.
http://dx.doi.org/10.1111/j.1945-5100.1998.tb01717.x
[26] Palme, H., Larimer, J.W. and Lipschutz, M.E. (1988) Moderately Volatile Elements. In: Kerridge, J.F. and Mathews, M.S., Eds., Meteorites and the Early Solar System, University of Arizona Press, Tucson, 436-461.
[27] Fegley Jr., B. (2000) Space Science Reviews, 92, 177-200.
http://dx.doi.org/10.1023/A:1005286910756
[28] Jones, A.P. (2001) Philosophical Transactions of the Royal Society A, 359, 1961-1972.
http://dx.doi.org/10.1098/rsta.2001.0890
[29] Alexander, C.M.O’.D., Boss, A.P., Keller, L.P., et al. (2007) Astronomical and Meteoritic Evidence for the Nature of Interstellar Dust and Its Processing in Protoplanetary Disks. In: Reipurth, B., Jewitt, D. and Keil, K., Eds., Protostars and Planets V, University of Arizona Press, Tucson, 801-813.
[30] Zubko, V., Dwek, E. and Arendt, R.G. (2004) The Astrophysical Journal Supplement Series, 152, 211-249.
http://dx.doi.org/10.1086/382351
[31] Tielens, A.G.G.M. (1998) The Astrophysical Journal, 499, 267-272.
http://dx.doi.org/10.1086/305640
[32] Watson, D.M., Kemper, F., Calvet, N., Keller, L.D., Furlan, E., Hartmann, L., et al. (2004) The Astrophysical Journal Supplement Series, 154, 391-395.
http://dx.doi.org/10.1086/422918
[33] Kessler-Silacci, J.E., Hillenbrand, L.A., Blake, G.A. and Meyer, M.R. (2005) The Astrophysical Journal, 622, 404-429.
http://dx.doi.org/10.1086/427793
[34] Ciardi, D.R., Telesco, C.M., Packham, C., Martin, C.G., Radomski, J.T., De Buizer, J.M., et al. (2005) The Astrophysical Journal, 629, 897-902.
http://dx.doi.org/10.1086/431548
[35] Honda, M., Kataza, H., Okamoto, Y.K., Miyata, T., Yamashita, T., Sako, S., et al. (2003) The Astrophysical Journal, 585, L59-L63.
http://dx.doi.org/10.1086/374034
[36] MacPherson, G.J. (2005) Calcium-Aluminum-Rich Inclusions in Chondritic Meteorites. In: Davis, A.M., Ed., Meteorites, Comets and Planets, Elsevier-Pergamon, Oxford, 201-246.
[37] Meibom, A., Krot, A.N., Robert, F., Mostefaoui, S., Russell, S.S., Petaev, M.I. and Gounelle, M. (2007) The Astrophysical Journal, 656, L33-L36.
http://dx.doi.org/10.1086/512052
[38] Grossman, L., Ebel, D.S. and Simon, S.B. (2002) Geochimica et Cosmochimica Acta, 66, 145-161.
http://dx.doi.org/10.1016/S0016-7037(01)00731-1
[39] Kolesnichenko, A.V. and Marov, M.Ya. (2006) Solar System Research, 40, 1-56.
http://dx.doi.org/10.1134/S0038094606010011
[40] Kolesnichenko, A.V. and Marov, M.Ya. (2008) Solar System Research, 42, 226-255.
http://dx.doi.org/10.1134/S0038094608030040
[41] Marov, M.Ya. and Kolesnichenko, A.V. (2013) Turbulence and Self-Organization: Modeling Astrophysical Objects. Springer, Berlin.
[42] Marov, M.Ya. and Ipatov, S.I. (2001) Volatiles Inventory and Formation of Planetary Atmospheres. In: Marov, M.Ya. and Rickman, H., Eds., Collisions in the Solar System, Kluwer Academic Publishers, 223-247.
http://dx.doi.org/10.1007/978-94-010-0712-2_14
[43] Marov, M.Ya. and Ipatov, S.I. (2005) Solar System Research, 39, 374-380.
http://dx.doi.org/10.1007/s11208-005-0050-1
[44] Supulver, K.D., Bridges, F.G., Tiscareno, S. and Lievore, J. (1997) Icarus, 129, 539-554.
http://dx.doi.org/10.1006/icar.1997.5801
[45] Wurm, G., Paraskov, G. and Krauss, O. (2005) Icarus, 178, 253-263.
http://dx.doi.org/10.1016/j.icarus.2005.04.002
[46] Blum, J. and Wurm, G. (2000) Icarus, 143, 138-146.
http://dx.doi.org/10.1006/icar.1999.6234
[47] Dominik, C. and Tielens, A.G.G.M. (1997) The Astrophysical Journal, 480, 647-673.
http://dx.doi.org/10.1086/303996
[48] Sekiya, M. and Takeda, H. (2005) Icarus, 176, 220-223.
http://dx.doi.org/10.1016/j.icarus.2005.01.008
[49] Chiang, E.I. (2004) Dust in Protoplanetary Disks. In: Witt, A.N., Clayton, G.C. and Draine, B.T., Eds., Astrophysics of Dust (ASP Conference Series: Volume 309), Astronomical Society of the Pacific, San Francisco, 213.
[50] Safronov, V.S. (1994) Astronomicheskii Vestnik, 28, 3-9.
[51] Vityazev, A.V., Pechernikova, G.V. and Safronov, V.S. (1990) Planetyzemnoigruppy: Proiskhozhdenieirannyayaevolyutsiya (The Terrestrial Planets: Origin and Early Evolution). Nauka, Moscow.
[52] Weidenschilling, S.J. (1984) Icarus, 60, 553-567.
http://dx.doi.org/10.1016/0019-1035(84)90164-7
[53] Weidenschilling, S.J. (2000) Space Science Reviews, 92, 295-310.
http://dx.doi.org/10.1023/A:1005259615299
[54] Weidenschilling, S.J. (2006) Icarus, 181, 572-586.
http://dx.doi.org/10.1016/j.icarus.2005.11.017
[55] Hockney, R. and Eastwood, J. (1984) Computer Simulation Using Particles. McGraw-Hill, New York.
[56] Panovko, Ya.G. (1976) Fundamentals of Applied Theory for Vibration and Impact. Mashinostroenie, Leningrad. (In Russian)
[57] Koonin, S.E. (1990) Computational Physics: FORTRAN Version. Addison Wesley, Redwood City.
[58] Rit, M. (2003) Nano Design in Science and Technology. WSP, New York.
[59] Morbidelli, A., Bottke, W., Nesvorny, D. and Levison, H.F. (2009) Icarus, 204, 558-573.
[60] Holsapple, K., et al. (2003) Asteroid Impacts: Laboratory Experiments and Scaling Laws. In: Bottke, W., Cellino, A., Paolicchi, P. and Binzel, R.P., Eds., Asteroids III, University of Arizona Press, Tucson, 443-461.
[61] Davis, D.R., Chapman, C.R., Weidenschilling, S.J. and Greenberg, R. (1985) Icarus, 62, 30-53.
http://dx.doi.org/10.1016/0019-1035(85)90170-8
[62] Asphaug, E., Ryan, E. and Zuber, M. (2003) Asteroid Interiors. In: Bottke, W., Cellino, A., Paolicchi, P. and Binzel, R.P., Eds., Asteroids III, University of Arizona Press, Tucson.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.