Strain Energy Release Rate Analyse of Matrix Micro Cracking in Composite Cross-Ply Laminates
Jean-Luc Rebière, Denys Gamby
.
DOI: 10.4236/msa.2011.26072   PDF    HTML     6,676 Downloads   10,942 Views   Citations

Abstract

The stress field distribution in composite cross ply laminates damaged by matrix cracking is analysed through an approach which uses several hypotheses to simplify the damage state. The proposed cracking criterion involves the partial components of the strain energy release rate associated with transverse and longitudinal cracking. The respective contributions of the 0° and 90° layers to the damage process are also investigated. The initiation of transverse and longitudinal cracking mechanisms is predicted. We also give an assessment of the influence of each individual component of the stress tensor on the strain energy release rate of the damaged laminate.

Share and Cite:

J. Rebière and D. Gamby, "Strain Energy Release Rate Analyse of Matrix Micro Cracking in Composite Cross-Ply Laminates," Materials Sciences and Applications, Vol. 2 No. 6, 2011, pp. 537-545. doi: 10.4236/msa.2011.26072.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] E. Urwald, “Influence de la géométrie et de la stratification sur l’endommagement par fatigue de plaques composites carbone/époxyde”, Ph.D. dissertation (in french), Université de Poitiers, April 1992.
[2] A. S. D. Wang and F.W. Crossman, “Initiation and growth of transverse cracks and edge delamination in composite laminates. Part I: An energy method.’’ Journal of Composite Materials, vol. 14 Suppl., 1980, pp. 71-87.
[3] R.-D. Jamison, K. Schulte, K.-L. Reifsnider. and W.-W. Stinchcomb, “Characterization and analysis of damage mechanisms in tension-tension fatigue of Graphite/Epoxy laminates.” Effects of Defects in Composites Materials, ASTM STP 836, American Society for Testing and Materials, 1984, pp. 21-55.
[4] P.S. Steif, “Parabolic shear-lag analyses of a [0/90]s laminate.” In: “Transverse crack growth and associated stiffness reduction during the fatigue of a simple crossply laminate.” Eds. S.L. Ogin, P.A. Smith and P.W.R. Beaumont, Report CUED/C/MATS/TR 105, Cambridge University, September 1984, pp. 40-41.
[5] N. Law and G. J. Dvorak, “Progressive transverse cracking in composite laminates.” Journal of Composite Materials, Vol. 22, October 1988, pp. 900-916.
[6] S.G. Lim and C.S. Hong, “Effect of transverse cracks on the thermomechanical properties of cross-ply laminated composites.” Composites Science and Technology, Vol. 34, No. 2, 1989, pp. 145-162.
[7] E. Reissner, “On a variational theorem in elasticity,” Journal of Mathematical Physics, Vol. 29, No. 2, 1950, pp. 90-95.
[8] J. Lema?tre, J.-L. Chaboche, “Mechanics of Solid Materials,” Cambridge University Press, 1994.
[9] V.V. Vasil’ev and A.A. Duchenco, “Analysis of the tensile deformation of glass-reinforced plastics,” Translated from Mekhanica Polimerov, No. 1, January/February. 1970, pp.144-147.
[10] Z. Hashin, “Analysis of cracked laminates: a variational approach.” Mechanics of Materials, Vol. 4, No. 2, July 1985, pp. 121-136.
[11] J. A. Nairn, “The strain energy release rate of composite micro cracking: a variational approach.” Journal of Composite Materials, Vol. 23, 1989, pp. 1106-1129.
[12] J.-L. Rebière, “Modélisation du champ des contraintes créé par des fissures de fatigue dans un composite stratifié carbone/polymère.” Ph.D. dissertation (in french), Université de Poitiers, 20 mars 1992.
[13] C.T. Herakovich, J. Aboudi, S.W. Lee and E.A. Strauss, “Damage in composite laminates: effects of transverse cracks.” Mechanics of materials, Vol. 7, No. 2, November 1988, pp. 91-107.
[14] D. Gamby, C. Henaff-Gardin and J.-L. Rebière, “Modelling of the damage distribution along the width of a composite laminate subjected to a tensile fatigue test,” In: M.H. Aliabadi, D.J. Cartwright and H. Nisitani,editors, 2nd International Conference on Computer Aided Assessment and Control, Localized Damage II, Southampton, UK, 1-3 July 1992, Elsevier Applied Science, London, 1992, pp. 315-25.
[15] D.H. Allen, S.E. Groves and C.E. Harris, “A thermomechanical constitutive theory for elastic composites with distributed damage. Part I- theoretical development”, report MM-5023-85-17, Mechanics and Materials Center, Texas A & M University, October 1985.
[16] O. Allix, P. Ladevèze and E. Le Dantec, “Modélisation de l’endommagement d’un pli élémentaire des composites stratifiés,” Proc.of 7th Journées Nationales des Composites, Lyon, G. Fantozzi and P. Fleishman. Eds., AMAC, Paris, November 1990, pp.715-724.
[17] S. Adali and R. K. Markins, “Effect of transverse matrix cracks on the frequencies of unsymmetrical, cross-ply laminates.” Journal of the Franklin Institute, Vol. 329, No. 4, July 1992, pp. 655-665.
[18] J. R. Yeh, “The mechanics of multiple transverse cracking in composite laminates,” International Journal of Solids and Structures, Vol. 25, No. 12, 1989, pp. 1445-55.
[19] A. K. Kaw and G. H. Besterfield, “Mechanics of multiple periodic brittle matrix cracks in unidirectional fiber-reinforced composites.” International Journal of Solids and Structures, Vol. 29, No. 10, 1992, pp.1193-207.
[20] Z. Hashin, “Analysis of orthogonally cracked laminates under tension.” Journal of Applied Mechanics, Vol. 54, December 1987, pp. 872-879.
[21] W.K. Binienda, A. Hong, G. D. Roberts, “Influence of material parameters on strain energy release rates for cross-ply laminate with pre-existing transverse crack.” Composites Engineering, Vol. 4, No. 12, 1994, pp. 1167- 1210.
[22] J.-L. Rebière J.-L., M.-N. Maatallah, D. Gamby, “Initiation and growth of transverse and longitudinal cracks in composite cross-ply laminates.” Composite Structures, Vol. 53, No. 2, August 2001, pp. 173-187.
[23] N.-V. Akshantala and R. Talreja, “A micromechanics based model for predicting fatigue life of composite laminate.” Materials Science and Engineering A, Vol. 285, No. 1-2, June 2000; pp. 303-313.
[24] D. Gamby, J. Martins, S. Maison and J.–L. Rebière, “Influence du confinement sur le taux de restitution d’énergie associé à la fissuration transverse d’un stratifié. Comparaison de deux simulations numériques.” Proc. of 7th Journées Nationales des Composites, Lyon, G. Fantozzi and P. Fleishman. Eds., AMAC, Paris, November 1990, pp. 609-617.
[25] J.-L. Rebière, M.-N. Maatallah and D. Gamby, “Analysis of damage mode transition in a cross-ply laminate under uniaxial loading.” Composite Structures, Vol. 55, No. 2, January 2002, pp. 115-126.
[26] J.-L. Rebière and D. Gamby, “A criterion for modelling initiation and propagation of matrix cracking and delamination in cross-ply laminates.” Composites Science and Technology, Vol. 64, No. 13-14, October 2004, pp. 2239- 2250.
[27] L.N. McCartney, “Energy-based prediction of progressive ply cracking and strength of general symmetric laminates using an homogenisation method.” Composites Part A, Vol. 36, No. 2, February 2005, pp. 119-128.
[28] E.J. Barbero and D.H. Cortes, “A mechanistic model for transverse damage initiation, evolution, and stiffness reduction in laminated composites.” Composites Part B, Vol. 41, No. 2, March 2010, pp. 124-132.
[29] J.-L. Rebière and D. Gamby, “A decomposition of the strain energy release rate associated with the initiation of transverse cracking, longitudinal cracking and delamination in cross-ply laminates.” Composite Structures, Vol. 84, No. 2, July 2008, pp. 186-197.
[30] K.L. Reifnider and R.D. Jamison, “Fracture of Fatigue-Loaded Composite Laminates,” International Journal of Fatigue, Vol. 4, No. 4, October 1982, pp. 187-197.
[31] A.S. Selvarathinam and Y. J. Weistman, “A shear lag analysis of transverse cracking and delamination in cross-ply carbon-fibre/epoxy composites under dry, saturated and immersed fatigue conditions.” Composites Science and Technology, Vol. 59, No. 14, November 1999, pp. 2115-2123.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.