Share This Article:

Functionalization and Structural Characterization of a Novel Nacrite-LiCl Nanohybrid Material

Abstract Full-Text HTML XML Download Download as PDF (Size:3422KB) PP. 202-215
DOI: 10.4236/ajac.2015.63019    2,358 Downloads   2,792 Views   Citations

ABSTRACT

The nacrite-LiCl hybrid composite material was prepared at room temperature by indirect inter-calation of lithium chloride between the planar layers of nacrite, a clay mineral, using acetone as a solvent. The structural identification of the hybrid clay material was determined by means of X-ray diffraction (XRD), thermogravimetric analysis (TGA) and infrared spectroscopy (IR). The qualitative XRD analysis showed that the basal spacing value increased from 0.72 nm to 1.14 nm and revealed that the alkali halide intercalated successfully in the interlayer space of the nacrite framework. The quantitative XRD analysis allowed us to determine the optimum structural parameters related to the position and number of keyed ions and water molecules per half unit cell calculated along the c* axis and the goodness of fit parameter (Rp). The thermal properties of the elaborated hybrid were in great accordance with the XRD study and confirm the intercalation of the hydrated salt in the interlamellar space of nacrite. Moreover, IR spectroscopy enabled the study of the interactions between the silicate ‘‘networks’’ and the alkali halide.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Jaafar, N. , Naamen, S. , Rhaiem, H. and Amara, A. (2015) Functionalization and Structural Characterization of a Novel Nacrite-LiCl Nanohybrid Material. American Journal of Analytical Chemistry, 6, 202-215. doi: 10.4236/ajac.2015.63019.

References

[1] Bergaya, F. and Lagaly, G. (2006) General Introduction: Clays, Clay Minerals, and Clay Science. In: Bergaya, F., Theng, B.K.G. and Lagaly, G., Eds., Handbook of Clay Science: Developments in Clay Science, Vol. 1, Elsevier, Amsterdam, 1-18.
http://dx.doi.org/10.1016/S1572-4352(05)01001-9
[2] Silva, F.A.N.G., Luz, A.B., Sampaio, J.A., Bertolino, L.C., Scorzelli, R.B., Duttine, M. and da Silva, F.T. (2009) Technological Characterization of Kaolin: Study of the Case of the Borborema-Serido Region (Brazil). Applied Clay Science, 44, 189-193.
http://dx.doi.org/10.1016/j.clay.2009.01.015
[3] Carretero, M.I. and Pozo, M. (2010) Clay and Non-Clay Minerals in the Pharmaceutical and Cosmetic Industries Part II. Active Ingredients. Applied Clay Science, 47, 171-181.
http://dx.doi.org/10.1016/j.clay.2009.10.016
[4] Rondón, W., Freire, D., de Benzo, Z., Sifontes, A.B., González, Y., Valero, M. and Brito, J.L. (2013) Application of 3A Zeolite Prepared from Venezuelan Kaolin for Removal of Pb(II) from Wastewater and Its Determination by Flame Atomic Absorption Spectrometry. American Journal of Analytical Chemistry, 4, 584-594.
http://dx.doi.org/10.4236/ajac.2013.410069
[5] Kabwadza-Corner, P., Munthali, M.W., Johan, E. and Matsue, N. (2014) Comparative Study of Copper Adsorptivity and Selectivity toward Zeolites. American Journal of Analytical Chemistry, 5, 395-405.
http://dx.doi.org/10.4236/ajac.2014.57048
[6] Castellano, M., Turturro, A., Riani, P., Montanari, T., Finocchio, E., Ramis, G. and Busca, G. (2010) Bulk and Surface Properties of Commercial Kaolins. Applied Clay Science, 48, 446-454.
http://dx.doi.org/10.1016/j.clay.2010.02.002
[7] Bailey, S.W. (1963) Polymorphism of the Kaolin Minerals. American Mineralogist, 48, 1197-1209.
[8] Yariv, S., Lapides, I., Michaelian, K.H. and Lahav, N. (1999) Thermal Intercalation of Alkali Halides into Kaolinite. Journal of Thermal Analysis and Calorimetry, 56, 865-884.
http://dx.doi.org/10.1023/A:1010187029708
[9] Yariv, S. and Lapides, I. (2000) The Effect of Mechanochemical Treatments on Clay Minerals and the Mechanochemical Adsorption of Organic Materials onto Clay Minerals. Journal of Materials Synthesis and Processing, 8, 223-233.
[10] Komori, Y. and Sugahara, Y. (1998) A Kaolinite-NMF-Methanol Intercalation Compound as a Versatile Intermediate for Further Intercalation Reaction of Kaolinite. Journal of Materials Research, 13, 930-934.
http://dx.doi.org/10.1557/JMR.1998.0128
[11] Orzechowski, K., Slonka, T. and Glowinski, J. (2006) Dielectric Properties of Intercalated Kaolinite. Journal of Physics and Chemistry of Solids, 67, 915-919.
http://dx.doi.org/10.1016/j.jpcs.2006.03.001
[12] Letaief, S., Diaco, T., Pell, W., Gorelsky, S.I. and Detellier, C. (2008) Ionic Conductivity of Nanostructured Hybrid Materials Designed from Imidazolium Ionic Liquids and Kaolinite. Chemistry of Materials, 20, 7136-7142.
http://dx.doi.org/10.1021/cm800758c
[13] Vagvolgyi, V., Kovacs, J., Horvath, E., Kristof, J. and Mako, E. (2008) Investigation of Mechanochemically Modified Kaolinite Surfaces by Thermoanalytical and Spectroscopic Methods. Journal of Colloid and Interface Science, 317, 523-529. http://dx.doi.org/10.1016/j.jcis.2007.09.085
[14] Michaelian, K.H., Lapides, I., Lahav, N., Yariv, S. and Brodsky, I. (1998) Infrared Study of the Intercalation of Kaolinite by Caesium Bromide and Caesium Iodide. Journal of Colloid and Interface Science, 204, 389-393.
http://dx.doi.org/10.1006/jcis.1998.5577
[15] Ben Haj Amara, A., Ben Brahim, J., Besson, G. and Pons, C.H. (1995) Study of Intercalated Nacrite with Dimethylsufoxide and n-Methylacetamide. Clay Minerals, 30, 295-306.
http://dx.doi.org/10.1180/claymin.1995.030.4.03
[16] Ben Haj Amara, A., Ben Rhaiem, H. and Plancon, A. (2000) Structural Evolution of Nacrite as a Function of the Nature of the Intercalated Organic Molecules. Journal of Applied Crystallography, 33, 1351-1359.
http://dx.doi.org/10.1107/S0021889800011730
[17] Naamen, S., Ben Rhaiem, H. and Ben Haj Amara, A. (2004) XRD Study of the Nacrite/CsCl/H2O Intercalation Complex. Materials Science Forum, 443-444, 59-64.
[18] Jaafar, N., Ben Rhaiem, H. and Ben Haj Amara, A. (2014) Synthesis, Characterization and Applications of a New Nanohybrid Composite: Nacrite/MgCl2·6H2O/Ethanol. International Conference on Composite Materials & Renewable Energy Applications (ICCMREA), IEEE Xplore Digital Library, Sousse, 22-24 January 2014, 1-6.
[19] Ben Haj Amara, A., Plancon, A., Ben Brahim, J. and Ben Rhaiem, H. (1998) XRD Study of the Stacking Mode in Natural and Hydrated Nacrite. Materials Science Forum, 278-281, 809-813.
http://dx.doi.org/10.4028/www.scientific.net/MSF.278-281.809
[20] Michaelian, K.H., Yariv, S. and Nasser, A. (1991) Study of the Interactions between Caesium Bromide and Kaolinite by Photoacoustic and Diffuse Reflectance Infrared Spectroscopy. Canadian Journal of Chemistry, 69, 749-754.
http://dx.doi.org/10.1139/v91-110
[21] Lapides, I., Lahav, N., Michaelian, K.H. and Yariv, S. (1997) X-Ray Study of the Thermal Intercalation of Alkali Halides into Kaolinite. Journal of Thermal Analysis, 49, 1423-1432.
http://dx.doi.org/10.1007/BF01983701
[22] Cruz, M., Jacobs, H. and Fripiat, J.J. (1973) Interlayer Bonding in Kaolin Minerals. Proceedings of the International Clay Conference, 1972, CSIC, Madrid: Division de Ciencias, Madrid, Spain, 35-46.
[23] Ben Haj Amara, A. (1997) X-Ray Diffraction, Infrared and TGA/DTG Analysis of Hydrated Nacrite. Clay Minerals, 32, 463-470.
http://dx.doi.org/10.1180/claymin.1997.032.3.08
[24] Ben Haj Amara, A., Ben Brahim, J., Ben Ayed, N. and Ben Rhaiem, H. (1996) Occurence of Nacrite in Old Pb-Zn Deposits from Northern Tunisia. Clay Minerals, 31, 127-130.
http://dx.doi.org/10.1180/claymin.1996.031.1.11
[25] Ben Haj Amara, A., Ben Brahim, J., Plancon, A. and Ben Rhaiem, H. (1998) X-Ray Diffraction Study of the Stacking Modes of Hydrated and Dehydrated Nacrite. Journal of Applied Crystallography, 31, 654-662.
http://dx.doi.org/10.1107/S0021889898000363
[26] Weiss, A., Thielepape, W. and Orth, H. (1966) Neue Kaolinit-Einlagerungsverbindungen. In: Rosenquist, T. and Graff-Petterson, P., Eds., Proceedings of the International Clay Conference, Israel University Press, Jerusalem, Vol. 1, 277-293.
[27] Garrett, W.G. and Walker, G.F. (1959) The Cation-Exchange Capacity of Hydrated Halloysite and the Formation of Halloysite-Salt Complexes. Clay Minerals, 4, 75-80.
http://dx.doi.org/10.1180/claymin.1959.004.22.02
[28] Wiewióra, A. and Brindley, G.W. (1969) Potassium Acetate Intercalation in Kaolinites and Its Removal: Effect of Material Characteristics. Proceedings of the International Clay Conference, L .Heller, Ed., Israel University Press, Jerusalem, Vol. 1, 723-733.
[29] Bailey, S.W. (1982) Nomenclature for Regular Interstratifications. Clay Minerals, 17, 243-248.
http://dx.doi.org/10.1180/claymin.1982.017.2.09
[30] Drits, V.A. and Tchoubar, C. (1990) The Modelization Method in the Determination of the Structural Characteristics of Some Layer Silicates: Internal Structure of the Layers, Nature and Distribution of Stacking Faults. In: X-Ray Diffraction by Disordered Lamellar Structures, Springer-Verlag, Berlin, 233-303.
[31] Ben Rhaiem, H., Tessier, D. and Ben Haj Amara, A. (2000) Mineralogy of the <2 μm Fraction of Three Mixed-Layer Clays from Southern and Central Tunisia. Clay Minerals, 35, 375-381.
http://dx.doi.org/10.1180/000985500546846
[32] Howard, S.A. and Preston, K.D. (1989) Profile Fitting of Powder Diffraction Patterns. In: Bish, D.L. and Post, J.E., Eds., Modern Powder Diffraction: Reviews in Mineralogy, Mineralogical Society of America, Washington DC, 217-275.
[33] Taser, M., Kucukcelebi, H., Armagan, N. and Güler, C. (1997) Use of R Factors in the Study of the Structural Defects in Phyllosilicates by X-Ray Powder Diffraction. Journal of Applied Crystallography, 30, 55-58.
http://dx.doi.org/10.1107/S0021889896008916
[34] Plancon, A. (1981) Diffraction by Layer Containing Different Kinds of Layers and Stacking Faults. Journal of Applied Crystallography, 14, 300-304.
http://dx.doi.org/10.1107/S0021889881009424
[35] Cheng, H., Liua, Q., Yang, J., Ma, S. and Frost, R.L. (2012) The Thermal Behavior of Kaolinite Intercalation Complexes—A Review. Thermochimica Acta, 545, 1-13.
http://dx.doi.org/10.1016/j.tca.2012.04.005
[36] Naamen, S., Ben Rhaiem, H., Karmous, M.S. and Ben Haj Amara, A. (2004) XRD Study of the Stacking Mode of the Nacrite/Alkali Halides Complexes. Materials Structure, 11.
[37] Leluk, K., Orzechowski, K., Jerieb, K., Baranowskib, A., Slonkac, T. and Glowinskic, J. (2010) Dielectric Permittivity of Kaolinite Heated to High Temperatures. Journal of Physics and Chemistry of Solids, 71, 827-831.
http://dx.doi.org/10.1016/j.jpcs.2010.02.008
[38] Heller-Kallai, L. (1978) Reactions of Salts with Kaolinite at Elevated Temperatures. Clay Minerals, 13, 221-235.
http://dx.doi.org/10.1180/claymin.1978.013.2.09
[39] Gabor, M., Poeppl, L. and Koeros, E. (1986) Effect of Ambient Atmosphere on Solid State Reaction of Kaolin-Salt Mixtures. Clays and Clay Minerals, 34, 529-533.
http://dx.doi.org/10.1346/CCMN.1986.0340505
[40] Frost, R.L., Kristof, J., Mako, E. and Kloprogge, J.T. (2000) Modification of the Hydroxyl Surface in Potassium-Acetate-Intercalated Kaolinite between 25 and 300°C. Langmuir, 16, 7421-7428.
http://dx.doi.org/10.1021/la9915318
[41] Yariv, S. (1986) Interactions of Minerals of the Kaolin Group with Cesium Chloride and Deuteration of the Complexes. International Journal of Tropical Agricultural, 5, 310-322.
[42] Michaelian, K.H., Friesen, W.I., Yariv, S. and Nasser, A. (1991) Diffuse Reflectance Infrared Spectra of Kaolinite and Kaolinite/Alkali Halide Mixtures. Curve-Fitting of the OH Stretching Region. Canadian Journal of Chemistry, 69, 1786-1790.
http://dx.doi.org/10.1139/v91-262

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.