Share This Article:

The Basic Cause of Superconductivity

Abstract Full-Text HTML XML Download Download as PDF (Size:2611KB) PP. 26-36
DOI: 10.4236/jmp.2015.61005    3,821 Downloads   4,745 Views   Citations
Author(s)    Leave a comment

ABSTRACT

This paper posits an extra force field, “super force field”, as the short-distance additional force field to ordinary force fields (gravitational, weak, electromagnetic, and strong) at absolute zero or extremely high density. The short distance super force field accounts for quantum phase transition at absolute zero, and provides the basic cause of superconductivity above absolute zero by quantum fluctuation. At absolute zero or extremely high density, to prevent inactivation or singularity, respectively, the short-distance super force field emerges in between the core particle and the ordinary force field, resulting in the super ordinary force field. In the super ordinary force field, the short-distance super force field excludes the long-distance ordinary force field. At absolute zero, the super ordinary force field emerges to account for quantum phase transition at absolute zero. Through quantum fluctuation, the super ordinary force appears above absolute zero as in superconductivity. Through quantum fluctuation, superconducting electric current is “super current” as one giant quantum state with the super force field that does not interact with ordinary forces, resulting in zero resistance.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Chung, D. (2015) The Basic Cause of Superconductivity. Journal of Modern Physics, 6, 26-36. doi: 10.4236/jmp.2015.61005.

References

[1] Bardeen, J., Cooper, L.N. and Schrieffer, J.R. (1957) Physical Review, 108, 1175-1205.
http://dx.doi.org/10.1103/PhysRev.108.1175
[2] Chung, D.-Y. and Krasnoholovets, V. (2013) Journal of Modern Physics, 4, 27-31.
http://dx.doi.org/10.4236/jmp.2013.44A005
[3] Chung, D.-Y. and Krasnoholovets, V. (2007). Scientific Inquiry, 8, 165-182.
[4] Krasnoholovets, V. and Chung, D.-Y. (2006) International Journal of Anticipatory Computing Systems, 191-197.
[5] Chung D.-Y. (2014) Global Journal of Science Frontier Research A, 14-3, 1-8.
[6] Chung, D.-Y. and Krasnoholovets, V. (2013) Journal of Modern Physics, 7A, 77-84.
http://dx.doi.org/10.4236/jmp.2013.47A1009
[7] Chung, D. and Hefferlin, R. (2013) Journal of Modern Physics, 4A, 21-26.
http://dx.doi.org/10.4236/jmp.2013.44A004
[8] Diaz, B.M. and Rowlands, P. (2003) American Institute of Physics Proceedings of the International Conference of Computing Anticipatory Systems, 203-218.
[9] Bell, J.S. (1964) Physics, 1, 195-199.
[10] Penrose, R. (2000) Wavefunction Collapse as a Real Gravitational Effect. In: Fokas, A., Grigoryan, A., Kibble, T. and Zegarlinski, B., Eds. Mathematical Physics, Imperial College, London, 266-282.
[11] Capozziello, S., Lambiase, G. and Scarpetta, G. (2000) International Journal of Theoretical Physics, 39, 15-22.
http://dx.doi.org/10.1023/A:1003634814685
[12] Sachdev, S. (1999) Physics World, 12, 33.
[13] Yanase, Y., Jujo, T., Nomura, T., Ikeda, H., Hotta, T. and Yamadam, K. (2003) Physics Reports, 387, 1-149.
http://dx.doi.org/10.1016/j.physrep.2003.07.002
[14] Anderson, P.W. (1972) Science, 177, 393-396.
http://dx.doi.org/10.1126/science.177.4047.393
[15] Julian, S.R., Pfleiderer, C., Grosche, F.M., Mathur, N.D., McMullan, G.J., Diver, A.J., et al. (1996) Journal of Physics: Condensed Matter, 8, 9675.
http://dx.doi.org/10.1088/0953-8984/8/48/002
[16] Kinross, A.W., Fu, M., Munsie, T.J., Dabkowska, H.A., Luke, G.M., Sachdev, S. and Imai, T. (2014) Physical Review X, 4, Article ID: 031008.
[17] Hashimoto, K., Cho, K., Shibauchi, T., Kasahara, S., Mizukami, Y., Katsumata, R., et al. (2012) Science, 336, 1554-1557.
[18] Coleman, P. and Schofield, A.J. (2005) Nature, 433, 226-229.
http://dx.doi.org/10.1038/nature03279
[19] Schafer, J., Schrupp, D., Rotenberg, E., Rossnagel, K., Koh, H., Blaha, P. and Claessen, R. (2004) Physical Review Letters, 92, Article ID: 097205.
http://dx.doi.org/10.1103/PhysRevLett.92.097205
[20] Hayward, L.E., Hawthorn, D.G., Melko, R.G. and Sachdev, S. (2014) Science, 343, 1336-1339.
http://dx.doi.org/10.1126/science.1246310
[21] Hubbard, J. (1963) Proceedings of the Royal Society A, 276, 238-257.
http://dx.doi.org/10.1098/rspa.1963.0204
[22] Nolting, W., Jaya, S.M. and Rex, S. (1996) Physical Review B, 54, 14455.
http://dx.doi.org/10.1103/PhysRevB.54.14455
[23] Bieniasz, K. and Oles, A.M. (2013) Physical Review B, 88, Article ID: 115132.
http://dx.doi.org/10.1103/PhysRevB.88.115132
[24] Davis, J.C. and Lee, D.H. (2013) Proceedings of the National Academy of Sciences of the United States of America, 110, 17623-17630.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.