Share This Article:

Regularization and Estimation in Regression with Cluster Variables

Abstract Full-Text HTML XML Download Download as PDF (Size:2924KB) PP. 814-825
DOI: 10.4236/ojs.2014.410077    3,452 Downloads   4,177 Views   Citations
Author(s)    Leave a comment

ABSTRACT

Clustering Lasso, a new regularization method for linear regressions is proposed in the paper. The Clustering Lasso can select variable while keeping the correlation structures among variables. In addition, Clustering Lasso encourages selection of clusters of variables, so that variables having the same mechanism of predicting the response variable will be selected together in the regression model. A real microarray data example and simulation studies show that Clustering Lasso outperforms Lasso in terms of prediction performance, particularly when there is collinearity among variables and/or when the number of predictors is larger than the number of observations. The Clustering Lasso paths can be obtained using any established algorithm for Lasso solution. An algorithm is proposed to construct variable correlation structures and to compute Clustering Lasso paths efficiently.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Yu, Q. and Li, B. (2014) Regularization and Estimation in Regression with Cluster Variables. Open Journal of Statistics, 4, 814-825. doi: 10.4236/ojs.2014.410077.

References

[1] Hoerl, A.E. and Kennard, R.W. (1970) Ridge Regression: Application to Nonorthogonal Problems. Technometrics, 12, 69-82.
http://dx.doi.org/10.1080/00401706.1970.10488635
[2] Tibshirani, R. (1996) Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical Society: Series B, 58, 267-288.
[3] Zou, H. and Hastie, T. (2005) Regularization and Variable Selection via the Elastic Net. Journal of the Royal Statistical Society: Series B, 67, 301-320.
http://dx.doi.org/10.1111/j.1467-9868.2005.00503.x
[4] Alter, O., Brown, P. and Botstein, D. (2000) Singular Value Decomposition for Genome-Wide Expression Data Processing and Modeling. Proceedings of the National Academy of Sciences of the United States of America, 97, 10101-10106.
[5] Zou, H., Hastie, T. and Tibshirani, R. (2006) Sparse Principal Component Analysis. Journal of Computational and Graphical Statistics, 15, 265-286.
http://dx.doi.org/10.1198/106186006X113430
[6] Tibshirani, R., Saunders, M., Rosset, S., Zhu, J. and Knight, K. (2005) Sparsity and Smoothness via the Fused Lasso. Journal of the Royal Statistical Society: Series B, 67, 91-108.
http://dx.doi.org/10.1111/j.1467-9868.2005.00490.x
[7] Yuan, M. and Lin, Y. (2006) Model Selection and Estimation in Regression with Grouped Variables. Journal of the Royal Statistical Society: Series B, 68, 49-67.
http://dx.doi.org/10.1111/j.1467-9868.2005.00532.x
[8] Bondell, H.D. and Reich, B.J. (2008) Simultaneous Regression Shrinkage, Variable Selection, and Supervised Clustering of Predictors with OSCAR. Biometrics, 64, 115-123.
http://dx.doi.org/10.1111/j.1541-0420.2007.00843.x
[9] Daye, Z.J. and Jeng, X.J. (2009) Shrinkage and Model Selection with Correlated Variables via Weighted Fusion. Computational Statistics & Data Analysis, 53, 1284-1298.
http://dx.doi.org/10.1016/j.csda.2008.11.007
[10] Jenatton, R., Obozinski, G. and Bach, F. (2010) Structured Sparse Principal Component Analysis. International Conference on Artificial Intelligence and Statistics (AISTATS).
[11] Jenatton, R., Audibert, J.Y. and Bach, F. (2011) Structured Variable Selection with Sparsity-Inducing Norms. Journal of Machine Learning Research, 12, 2777-2824.
[12] Huang, J., Ma, S. and Zhang, C.H. (2011) The Sparse Laplacian Shrinkage Estimator for High-Dimensional Regression. Annals of Statistics, 39, 2021-2046.
http://dx.doi.org/10.1214/11-AOS897
[13] Buhlmann, P., Rutimann, P., van de Geer, S. and Zhang, C.H. (2013) Correlated Variables in Regression: Clustering and Sparse Estimation. Journal of Statistical Planning and Inference, 143, 1835-1858.
http://dx.doi.org/10.1016/j.jspi.2013.05.019
[14] Besag, J. (1974) Spatial Interaction and the Statistical Analysis of Lattice Systems (with Discussion). Journal of the Royal Statistical Society, Series B, 36, 192-236.
[15] Efron, B., Johnstone, I., Hastie, T. and Tibshirani, R. (2004) Least Angel Regression. Annals of Statistics, 32, 407-499.
http://dx.doi.org/10.1214/009053604000000067
[16] Friedman, J., Hastie, T., Hofling, H. and Tibshirani, R. (2007) Pathwise Coordinate Optimization. Annals of Applied Statistics, 1, 302-332.
http://dx.doi.org/10.1214/07-AOAS131
[17] Schafer, J. and Strimmer, K. (2005) A Shrinkage Approach to Large-Scale Covariance Estimation and Implications for Functional Genomics. Statistical Applications in Genetics and Molecular Biology, 4, 32.
[18] Jolliffe, I.T., Trendafilov, N.T. and Uddin, M. (2003) A Modified Principal Component Technique Based on the Lasso. Journal of Computational and Graphical Statistics, 12, 531-547.
http://dx.doi.org/10.1198/1061860032148
[19] Singh, D., Febbo, P., Ross, K., Jackson, D.G., Manola, J., Ladd, C., Tamaryo, P., Renshaw, A.A., D’Amico, A.V., Richie, J.P., Lander, E.S., Loda, M., Kantoff, P.W., Golub, T.R. and Sellers, W.R. (2002) Gene Expression Correlates of Clinical Prostate Cancer Behavior. Cancer Cell, 1, 203-209.
http://dx.doi.org/10.1016/S1535-6108(02)00030-2
[20] Guyon, I., Weston, J., Barnhill, S. and Vaapnik, V. (2002) Gene Selection for Cancer Classification Using Support Vector Machines. Machine Learning, 46, 389-422.
http://dx.doi.org/10.1023/A:1012487302797

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.