Share This Article:

Determination of the Antiretroviral Drug Zidovudine in Diluted Alkaline Electrolyte by Adsorptive Stripping Voltammetry at the Mercury Film Electrode

Abstract Full-Text HTML Download Download as PDF (Size:1348KB) PP. 223-234
DOI: 10.4236/ajac.2011.22027    4,613 Downloads   9,226 Views   Citations

ABSTRACT

This paper describes a stripping method for the determination of zidovudine at the submicromolar concentration levels. This method is based on the controlled adsorptive accumulation of zidovudine at the thin-film mercury electrode, followed by a linear-sweep stripping voltammetry measurement of the surface species. Optimal experimental conditions include a NaOH solution of 2.0 × 10–3 mol●L–1 (sup-porting electrolyte), an accumulation potential of –0.30 V and a scan rate of 100 mV?s–1. The response of zidovudine is linear over the concentration range 0.01 - 0.08 ppm. After an accumulation time of 5 minutes, the detection limit was found to be 0.67 ppb (2.5 × 10–9 mol●L–1). More convenient methods to measure zidovudine concentration in the presence of the didanosine, acyclovir, nevirapine, lamivudine, and efavirenz, were also investigated. The presence of zidovudine together with ATP or ssDNA demonstrates the utility of this method.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

A. Castro, R. Aucélio, N. Rey, E. Miguel and P. Farias, "Determination of the Antiretroviral Drug Zidovudine in Diluted Alkaline Electrolyte by Adsorptive Stripping Voltammetry at the Mercury Film Electrode," American Journal of Analytical Chemistry, Vol. 2 No. 2, 2011, pp. 223-234. doi: 10.4236/ajac.2011.22027.

References

[1] J. P. Horwitz, J. Chua, and M. Noel, “Nucleosides. 5. Monomesylates of 1-(2]-Deoxy-Beta-D-Lyxofuranosyl) Thymine,” Journal of Organic Chemistry, Vol. 29, No. 7, 1964, pp. 2076-2078. doi:10.1021/jo01030a546
[2] W. Ostertag, G. Roesler, C. J. Krieg, J. Kind, T. Cole, T. Crozier, G. Gaedicke, G. Steinheider, N. Kluge and S. Dube, “Induction of Endogenous Virus and of Thymidine Kinase by Bromodeoxyuridine in Cell-Cultures Transformed by Friend Virus,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 71, No. 12, 1974, pp. 4980-4985. doi:10.1073/pnas.71.12.4980
[3] H. Mitsuya, K. J. Weinhold, P. A. Furman, M. H. STCLair, S. N. Lehrman, R. C. Gallo, D. Bolognesi, D. W. Barry and S. Broder, “3’-Azido-3’-Deoxythymidine (BW A509U): An Antiviral Agent That Inhibits the Infectivity and Cytopathic Effect of Human Lymphotropic-T virus type-III Lymphadenopathy-Associated Virus In Vitro,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 82, No. 20, 1985, pp. 7096-7100.
[4] R. P. Quinn, B. Orban and S. Tadepalli, “Radioimmunoassay For Retrovir, An Anti-Human Immunodeficiency Virus Drug,” Journal of Immunoassay, Vol. 10, No. 2-3, 1989, pp. 177-189. doi:10.1080/01971528908053235
[5] H. Mitsuya, R. Yarchoan, S. Hayashi and S. Broder, “Antiviral Therapy against HIV-Infection,” Journal of the American Academy of Dermatology, Vol. 22, No. 6, 1990, pp. 1282-1294. doi:10.1016/0190-9622(90)70175-H
[6] S. D. Young, S. F. Britcher, L. O. Tran, L. S. Payne, W. C. Lumma, T. A. Lyle, J. R. Huff, P. S. Anderson, D. B. Olsen, S. S. Carroll, D. J. Pettibone, J. A. Obrien, R. G. Ball, S. K. Balani, J. H. Lin, I. W. Chen, W. A. Schleif, V. V. Sardana, W. J. Long, V. W. Byrnes, and E. A. L. Emini, “743,726 (DMP-266): A Novel, Highly Potent Nonnucleoside Inhibitor of the Human-Immunodeficiency-Virus Type-1 Reverse-Transcriptase,” Antimicrobial Agents and Chemotherapy, Vol. 39, No. 12, 1995, pp. 2602-2605.
[7] G. J. Veal and D. J. Back, “Metabolism of Zidovudine,” General Pharmacology, Vol. 26, No. 7, 1995, pp. 1469-1475. doi:10.1016/0306-3623(95)00047-X
[8] M. Gotte, X. G. Li and M. A. Wainberg, “HIV-1 Reverse Transcription: A Brief Overview Focused on Structure-Function Relationships among Molecules Involved in Initiation of the Reaction,” Archives of Biochemistry and Biophysics, Vol. 365, No. 2, 1999, pp. 199-210. doi:10.1006/abbi.1999.1209
[9] O. Foldes, P. Uherova and V. Mayer, “Plasma-Levels of the Anti-HIV 3’-Azido-2’, 3’-Dideoxythymidine (AZT) – Determination by RIA and HPLC,” Acta Virologica, Vol. 37, No. 2-3, 1993, pp. 156-164.
[10] T. Nadal, J. Ortuno and J. A. Pascual, “Rapid and sensitive determination of zidovudine and zidovudine glucuronide in human plasma by ion-pair high-performance liquid chromatography,” Journal of Chromatography A, Vol. 721, No. 1, 1996, pp. 127-137.
[11] J. Bloom, J. Ortiz and J. F. Rodriguez, “Azido-Thymidine Triphosphate Determination Using Micellar Electrokinetic Capillary Chromatography,” Cellular and Molecular Biology, Vol. 43, No. 7, 1997, pp. 1051-1055.
[12] X. L. Tan and F. D. Boudinot, “Simultaneous Determination of Zidovudine and Its Monophosphate in Mouse Plasma and Peripheral Red Blood Cells by High-Performance Liquid Chromatography,” Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, Vol. 740, No. 2, 2000, pp. 281-287. doi:10.1016/S0378-4347(00)00109-2
[13] S. D. Brown, C. A. White and M. G. Bartlett, “HPLC Determination of Acyclovir and Zidovudine IN Maternal Plasma, Amniotic Fluid, Fetal, and Placental Tissues Using Ultra-Violet Detection,” Journal of Liquid Chromatography & Related Technologies, Vol. 25, No. 18, 2002, pp. 2857-2871. doi:10.1081/JLC-120014955
[14] A. Dunge, N. Sharda, B. Singh and S. Singh, “Validated Specific HPLC Method for Determination of Zidovudine during Stability Studies,” Journal of Pharmaceutical and Biomedical Analysis, Vol. 37, No. 5, 2005, pp. 1109-1114. doi:10.1016/j.jpba.2004.09.013
[15] M. A. Quevedo, S. A. Teijeiro and M. C. Brinon, “Quantitative Plasma Determination of a Novel Antiretroviral Derivative of Zidovudine by Solid-Phase Extraction and High-Performance Liquid Chromatography,” Analytical and Bioanalytical Chemistry, Vol. 385, No. 2, 2006, pp. 377-384. doi:10.1007/s00216-006-0404-7
[16] G. G. Granich, M. R. Eveland and D. J. Krogstad, “Fluorescence Polarization Immunoassay for Zidovudine,” Antimicrobial Agents and Chemotherapy, Vol. 33, No. 8, 1989, pp. 1275-1279.
[17] R. I. Stefan and R. G. Bokretsion, “Diamond Paste Based Immunosensor for the Determination of Azido-Thymidine,” Journal of Immunoassay & Immunochemistry, Vol. 24, No. 3, 2003, pp. 319-324. doi:10.1081/IAS-120022941
[18] M. A. Raviolo, J. M. Sanchez, M. C. Brinon and M. A. Perillo, “Determination of Liposome Permeability of Ionizable Carbamates of Zidovudine by Steady State Fluorescence Spectroscopy,” Colloids and Surfaces B-Biointerfaces, Vol. 61, No. 2, 2008, pp. 188-198. doi:10.1016/j.colsurfb.2007.08.004
[19] G. C. Barone, H. B. Halsall and W. R. Heineman, “Electrochemistry of Azidothymidine,” Analytica Chimica Acta, Vol. 248, No. 2, 1991, pp. 399-407. doi:10.1016/S0003-2670(00)84657-7
[20] G. C. Barone, A. J. Pesce, H. B. Halsall and W. R. Heineman “Electrochemical Determination of Azido-Thymidine in Human Whole-Blood,” Analytical Biochemistry, Vol. 198, No. 1, 1991, pp. 6-9. doi:10.1016/0003-2697(91)90497-H
[21] L. Trnkova, R. Kizek and J. Vacek, “Square Wave and Elimination Voltammetric Analysis of Azidothymidine in the Presence of Oligonucleotides and Chromosomal DNA,” Bioelectrochemistry, Vol. 63, No. 1-2, 2004, pp. 31-36. doi:10.1016/j.bioelechem.2003.10.012
[22] J. Vacek, Z. Andrysik, L. Trnkova and R. Kizek, “Determination of Azidothymidine: An Antiproliferative and Virostatic Drug by Square-Wave Voltammetry,” Electroanalysis, Vol. 16, No. 3, 2004, pp. 224-230. doi:10.1002/elan.200302787
[23] K. Peckova, T. Navratil, B. Yosypchuk, J. C. Moreira, K. C. Leandro and J. Barek, “Voltammetric Determination of Azidothymidine Using Silver Solid Amalgam Electrodes,” Electroanalysis, Vol. 21, No. 15, 2009, pp. 1750-1757. doi:10.1002/elan.200904660
[24] K. C. Leandro, J. C. Moreira and P. A. M. Farias “Determination of Zidovudine in Pharmaceuticals by Differential Pulse Voltammetry,” Analytical Letters, Vol. 43, No. 12, 2010, pp. 1951-1957. doi:10.1080/00032711003687021
[25] P. A. M. Farias, A. de L. R. Wagener and A. A. Castro, “Adsorptive Voltammetric Behavior of Adenine in Presence of Guanine and Some Trace Elements at the Static Mercury Drop Electrode,” Analytical Letters, Vol. 34, No. 12, 2001, pp. 2125-2140. doi:10.1081/AL-100106844
[26] P. A. M. Farias, A. de L. R. Wagener and A. A. Castro, “Adsorptive Voltammetric Behavior of Thymine in Presence of Guanine at the Static Mercury Drop Electrode,” Analytical Letters, Vol. 34, No. 8, 2001, pp. 1295-1310. doi:10.1081/AL-100104154
[27] P. A. M. Farias, A. D. L. R. Wagener, A. A. Junqueira and A. A. Castro “Adsorptive Stripping Voltammetric Behavior of Adenosine Triphosphate (ATP) in Presence of Copper at the Mercury Film Electrode,” Analytical Letters, Vol. 40, No. 9, 2007, pp. 1779-1790. doi:10.1080/00032710701384717
[28] P. A. M. Farias, A. A. Castro, A. D. R. Wagener and A. A. Junqueira, “DNA Determination in the Presence of Copper in Diluted Alkaline Electrolyte by Adsorptive Stripping Voltammetry at the Mercury Film Electrode,” Electroanalysis, Vol. 19, No. 11, 2007, pp. 1207-1212. doi:10.1002/elan.200703845

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.