Share This Article:

Statistical Foundation of Empirical Isotherms

Abstract Full-Text HTML XML Download Download as PDF (Size:2617KB) PP. 687-701
DOI: 10.4236/ojs.2014.49064    6,191 Downloads   7,349 Views   Citations
Author(s)    Leave a comment

ABSTRACT

We show that most of the empirical or semi-empirical isotherms proposed to extend the Langmuir formula to sorption (adsorption, chimisorption and biosorption) on heterogeneous surfaces in the gaseous and liquid phase belong to the family and subfamily of the BurrXII cumulative distribution functions. As a consequence they obey relatively simple differential equations which describe birth and death phenomena resulting from mesoscopic and microscopic physicochemical processes. Using the probability theory, it is thus possible to give a physical meaning to their empirical coefficients, to calculate well defined quantities and to compare the results obtained from different isotherms. Another interesting consequence of this finding is that it is possible to relate the shape of the isotherm to the distribution of sorption energies which we have calculated for each isotherm. In particular, we show that the energy distribution corresponding to the Brouers-Sotolongo (BS) isotherm [1] is the Gumbel extreme value distribution. We propose a generalized GBS isotherm, calculate its relevant statistical properties and recover all the previous results by giving well defined values to its coefficients. Finally we show that the Langmuir, the Hill-Sips, the BS and GBS isotherms satisfy the maximum Bolzmann-Shannon entropy principle and therefore should be favoured.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Brouers, F. (2014) Statistical Foundation of Empirical Isotherms. Open Journal of Statistics, 4, 687-701. doi: 10.4236/ojs.2014.49064.

References

[1] Brouers, F., Sotolongo-Costa, O., Marquez, F. and Pirard, J.P. (2005) Microporous and Heterogeneous Surface Adsorption Isotherms Arising from Lévy Distributions. Physica A, 349, 271-282.
http://dx.doi.org/10.1016/j.physa.2004.10.032
[2] Tien, C. (2008) Remarks on Adsorption Manuscripts Revised and Declined: An Editorial. Journal of Hazardous Materials, 150, 2-3.
http://dx.doi.org/10.1016/j.jhazmat.2007.04.015
[3] Ncibi, M.C., Altenor, S., Steffen, M., Brouers, F. and Gaspard, S. (2008) Modelling Simple Compound Adsorption onto Porous and Non-Porous Sorbents Using a Deformed Weibull Exponential Isotherm. Chemical Engineering, 145, 196-202.
http://dx.doi.org/10.1016/j.cej.2008.04.001
[4] Madrakian, T., Afkhami, F. and Ahmadi, M. (2012) Adsorption and Kinetic Studies of Different Organic Dyes onto Magnetic Nanoparticles Loaded Tea Waste and Removal of Them from Wastewater Samples. Spectrochimica Acta A, 99, 102-109.
http://dx.doi.org/10.1016/j.saa.2012.09.025
[5] Azizian, S. and Baghery, M. (2014) Enhanced Adsorption of Cu2+ from Aqueous Solution by Ag Doped Nano-Structured ZnO. Journal of Molecular Liquids, 196, 198-203.
http://dx.doi.org/10.1016/j.molliq.2014.03.043
[6] Vargas, A.M.M., Cazela, A.J., Kunita, M.H. and Silva, T.L. (2011) Adsorption of Methylene Blue on Activated Carbon from Flamboyant Pads: Study of Adsorption Isotherms and Kinetic Models. Chemical Engineering Journal, 168, 722-730.
http://dx.doi.org/10.1016/j.cej.2011.01.067
[7] Altenor, S., Carene, B., Enmanuel, E., Lamber, J., Ehrharat, J.J. and Gaspard, S. (2009) Adsorption Studies of Methylene Blue and Phenol onto Vetiver Roots Activated Carbon Prepared by Chemical Activation. Journal of Hazardous Materials, 165, 1029-1039.
http://dx.doi.org/10.1016/j.jhazmat.2008.10.133
[8] Hejazifar, M. and Azizian, S. (2012) Adsorption of Cationic and Anionic Dyes onto the Activated Carbon Prepared from Grapevine Rhytidome. Journal of Dispersion Science and Technology, 33, 846-853.
http://dx.doi.org/10.1080/01932691.2011.579861
[9] Ncibi, M.C., Majoub, B., Steffen, M., Brouers, F. and Gaspard, S. (2009) Sorption Dynamic Investigation of Chromium (VI) onto Posidonia Oceanica Fibres: Kinetic Modelling Using New Generalized Fractal Equation. Biochemical Engineering Journal, 46, 141-146.
http://dx.doi.org/10.1016/j.bej.2009.04.022
[10] Altenor, S., Ncibi, M.C., Emmanuel, E. and Gaspard, S. (2012) Textural Characteristic Physiochemical Properties and Adsorption Efficiencies of Caribbean Alga. Turbinaria turbinata and Its Derived Carbonaceous Materials for Water Treatment Application. Biochemical Engineering Journal, 67, 35-44.
http://dx.doi.org/10.1016/j.bej.2012.05.008
[11] Hamissa, A.M.B., Brouers, F., Ncibi, M.C. and Steffen, M. (2013) Kinetic Modeling and Methylène Sorption onto Agava Americana Fibres: Fractal Kinetic and Regeneration Studies. Separation Science and Technology, 48, 2834-2842.
http://dx.doi.org/10.1080/01496395.2013.809104
[12] Salleh, M., Mahmou, D., Karim, W. and Idris, A. (2011) Cationic and Anionic Dye Adsorption by Agricultural Solid Wastes: A Comprehensive Review. Desalination, 280, 1-13.
http://dx.doi.org/10.1016/j.desal.2011.07.019
[13] Figaro, S., Avril, J.P., Brouers, F., Ouensanga, A. and Gaspad, S. (2009) Adsorption Studies of Molasse’s Wastewaters on Activated Carbon: Modelling with a New Fractal Kinetic Equation and Evaluation of Kinetic Models. Journal of Hazardous Materials, 161, 649-656.
http://dx.doi.org/10.1016/j.jhazmat.2008.04.006
[14] Singh, A., Arutyunov, D., Szymanski, C.M. and Evoy, S. (2012) Bacteriophage Based Probes for Pathogen Detection. Analyst, 137, 3405-3421.
http://dx.doi.org/10.1039/c2an35371g
[15] Naidoo, R., Singh, A., Arya, S.K., Beadle, B., Glass, N., Tanha, J., Szymanski, C.M. and Evoy, S. (2012) Surface-Immobilization of Chromatographically Purified Bacteriophages for the Optimized Capture of Bacteria. Bacteriophage, 2, 15-24.
http://dx.doi.org/10.4161/bact.19079
[16] Singh, A., Poshtiban, S. and Evoy, S. (2013) Recent Advances in Bacteriophage Based Biosensors for Food-Borne Pathogen Detection. Sensors, 13, 1763-1786.
http://dx.doi.org/10.3390/s130201763
[17] Tsallis, C. (2009) Nonadditive Entropy and Nonextensive Statistical Mechanics. An Overview after 20 Years. Brazilian Journal of Physics, 39, 337-357.
http://dx.doi.org/10.1590/S0103-97332009000400002
[18] Brouers, F., Sotolongo-Costa, O. and Weron, K. (2004) Burr, Lévy, Tsallis. Physica A, 344, 409-416.
http://dx.doi.org/10.1016/j.physa.2004.06.008
[19] Brouers, F. and Sotolongo-Costa, O. (2005) Relaxation in Heterogeneous Systems: A Rare Events Dominated Phenomenon. Physica A, 356, 359-374.
http://dx.doi.org/10.1016/j.physa.2005.03.029
[20] Brouers, F. and Sotolongo-Costa, O. (2006) Generalized Fractal Kinetics in Complex Systems (Application to Biophysics and Biotechnology). Physica A, 368, 165-175.
http://dx.doi.org/10.1016/j.physa.2005.12.062
[21] Cerofolini, G.F. (1974) Localized Adsorption on Heterogeneous Surfaces. Thin Solid Films, 23, 129-152.
http://dx.doi.org/10.1016/0040-6090(74)90235-1
[22] Jaroniec, M. and Piotowska, J. (1986) Isotherm Equations for Adsorption on Heterogeneous Microporous Solids. Monatshefte für Chemie/Chemical Monthly, 117, 7-19.
[23] Yaghi, N.Z. (2007) Iron Oxide Based Materials for the Removal of Copper from Drinking Water—A Study of Freundlich Adsorption Isotherms, Site Energy Distributions and Energy Frequency Distributions. Master’s Thesis, Chalmers University of Technology, G?teborg.
[24] Kumar, K.V., Monteiro de Castro, M., Martinez-Escandell, M., Molina-Sabio, M. and Rodriguez-Reinoso, F. (2011) A Site Energy Distribution Function from Toth Isotherm for Adsorption of Gases on Heterogeneous Surfaces. Physical Chemistry Chemical Physics, 13, 5753-5759.
http://dx.doi.org/10.1039/c0cp00902d
[25] Burr, I.W. (1942) Cumulative Frequency Functions. The Annals of Mathematical Statistics, 13, 215-232.
http://dx.doi.org/10.1214/aoms/1177731607
[26] Maddala, G.S. (1983) Limited-Dependent and Qualitative Variables in Econometrics. Cambridge University Press, Cambridge.
[27] Verhulst, P.F. (1845) Recherches mathématiques sur la loi d’accroissement de la population. Nouveaux Mémoires de l’Académie Royale des Sciences et Belles-Lettres de Bruxelles, 18, 14-54.
[28] Ausloos, M. and Dirickx, M. (2005) The Logistic Map and the Road to Chaos. Springer, Berlin.
[29] Sornette, D. (2004) Critical Phenomena in Natural Sciences. 2nd Edition, Springer, Berlin.
[30] Jovanovic, D.S. (1969) Physical Adsorption of Gazes. Kolloid-Zeitschrift und Zeitschrift für Polymere, 235, 1214-1225.
[31] Monod, J., Wyman, J. and Changeux, J.P. (1965) On the Nature of Allosteric Transitions: A Plausible Model. Journal of Molecular Biology, 12, 88-118.
http://dx.doi.org/10.1016/S0022-2836(65)80285-6
[32] Stanislavsky, A. and Weron, K. (2013) Is There a Motivation for a Universal Behaviour in Molecular Populations Undergoing Chemical Reactions? Physical Chemistry Chemical Physics, 15, 15595-15601.
http://dx.doi.org/10.1039/c3cp52272e
[33] Marczewski, A.W. and Jaroniec, M. (1983) A New Isotherm Equation for Single-Solute Adsorption from Dilute Solutions on Energetically Heterogeneous Solids. Monatshefte für Chemie/Chemical Monthly, 114, 711-715.
http://dx.doi.org/10.1007/BF01134184
[34] Dagum, C. (1977) A New Model of Personal Income-Distribution-Specification and Estimation. Economie Appliquée, 30, 413-437.
[35] Toth, J. (1995) Uniform Interpretation of Gas/Solid Adsorption. Advances in Colloid and Interface Science, 55, 1-239.
http://dx.doi.org/10.1016/0001-8686(94)00226-3
[36] Oswin, C.R. (1946) The Kinetics of Package Life III. The Isotherm. Journal of the Society of Chemical Industry, 65, 419-421.
http://dx.doi.org/10.1002/jctb.5000651216
[37] Redlich, O. and Peterson, D.L. (1959) A Useful Adsorption Isotherm. Journal of Physical Chemistry, 63, 1024.
http://dx.doi.org/10.1021/j150576a611
[38] Müller, G., Radke, C.J. and Prausnitz, J.M. (1985) Adsorption of Weak Organic Electrolytes from Dilute Aqueous Solution onto Activated Carbon. Part I. Single-Solute Systems. Journal of Colloid and Interface Science, 103, 466-483.
http://dx.doi.org/10.1016/0021-9797(85)90123-7
[39] Gumbel, E.J. and Lieblein, J. (1954) Statistical Theory of Extreme Values and Some Practical Applications: A Series of Lectures (Vol. 33). US Government Printing Office, Washington.
[40] Coles, S. (2001) An Introduction to Statistical Modeling of Extreme Values. Springer Verlag, Berlin.
http://dx.doi.org/10.1007/978-1-4471-3675-0
[41] Fischer, R.A. and Tippett, L.H.C. (1928) Limiting Forms of the Frequency Distribution of the Largest or Smallest Member of a Sample. Mathematical Proceedings of the Cambridge Philosophical Society, 24, 180-190.
http://dx.doi.org/10.1017/S0305004100015681
[42] Young, D.M. and Crowell, A.D. (1962) Physical Adsoption of Gases, Chapter 7, Buttenwerks, London.
[43] Papalexiou, S.M. and Koutsoyiannis, D. (2012) Entropy Based Derivation of Probability Distributions: A Case Study to Daily Rainfall. Advances in Water Resources, 45, 51-57.
http://dx.doi.org/10.1016/j.advwatres.2011.11.007
[44] Park, S.Y. and Bera, A.K. (2009) Maximum Entropy Autoregressive Conditional Heteroskedasticity Model. Journal of Econometrics, 150, 219-230.
http://dx.doi.org/10.1016/j.jeconom.2008.12.014
[45] Kapur, J.N. (1993) Maximum Entropy Models in Science and Technology. Wiley Eastern Limited.
[46] McDonald, J.B. (1984) Some Generalized Functions for the Size Distribution of Income. Journal of the Econometric Society, 52, 647-663.
http://dx.doi.org/10.2307/1913469
[47] Hetman, P. and Weron, K. (2004) Extreme-Value Approach to the Tsallis’ Superstatistics. Acta Physica Polonica B, 35, 1375-1386.
[48] Sahouli, B., Blacher, S. and Brouers, F. (1997) Applicability of the Fractal FHH Equation. Langmuir, 13, 4391-4394.
http://dx.doi.org/10.1021/la962119k
[49] Blacher, S., Pirard, R., Pirard, J.P., Sahouli, B. and Brouers, F. (1997) On the Texture Characterization of Mixed SiO2-ZrO2 Aerogels Using the Nitrogen Adsorption-Desorption Isotherms: Classical and Fractal Methods. Langmuir, 13, 1145-1149.
http://dx.doi.org/10.1021/la950883l
[50] Sahouli, B., Blacher, S. and Brouers, F. (1996) Fractal Surface Analysis by Using Nitrogen Adsorption Data: The Case of the Capillary Condensation Regime. Langmuir, 12, 2872-2874.
http://dx.doi.org/10.1021/la950877p
[51] Dabrowski, A. (2001) Adsorption: From Theory to Practice. Advances in Colloid and Interface Science, 93, 135-224.
http://dx.doi.org/10.1016/S0001-8686(00)00082-8
[52] Brouers, F. (2013) Sorption Isotherms and Probability Theory of Complex Systems. arXiv:1309.5340.

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.