Share This Article:

Au Nanoparticle Formation from Amorphous Au/Si Multilayer

Abstract Full-Text HTML XML Download Download as PDF (Size:3819KB) PP. 193-205
DOI: 10.4236/jcpt.2014.44024    4,076 Downloads   4,681 Views  

ABSTRACT

By direct observations of transmission electron microscopy (TEM), irreversible morphological transformations of as-deposited amorphous Au/Si multilayer (a-Au/a-Si) were observed on heating. The well arrayed sequence of the multilayer changed to zigzag layered structure at 478 K (=Tzig). Finally, the zigzag structure transformed to Au nanoparticles at 508 K. The distribution of the Au nanoparticles was random within the thin film. In situ X-ray diffraction during heating can clarify partial crystallization Si (c-Si) in the multilayer at 450 K (= ), which corresponds to metal induced crystallization (MIC) from amorphous Si (a-Si) accompanying by Au diffusion. On further heating, a-Au started to crystallize at around 480 K (=Tc) and gradually grew up to 3.2 nm in radius, although the volume of c-Si was almost constant. Continuous heating caused crystal Au (c-Au) melting into liquid AuSi (l-AuSi) at 600 K (= ), which was lower than bulk eutectic temperature ( ). Due to the AuSi eutectic effect, reversible phase transition between liquid and solid occurred once temperature is larger than . Proportionally to the maximum temperatures at each cycles (673, 873 and 1073 K), both and Au crystallization temperature approaches to . Using a thermodynamic theory of the nanoparticle formation in the eutectic system, the relationship between and the nanoparticle size is explained.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Aono, M. , Ueda, T. , Abe, H. , Kobayashi, S. and Inaba, K. (2014) Au Nanoparticle Formation from Amorphous Au/Si Multilayer. Journal of Crystallization Process and Technology, 4, 193-205. doi: 10.4236/jcpt.2014.44024.

References

[1] Hiraki, A. (1983) Low Temperature Reactions at Si-Metal Contacts—From SiO2 Growth Due to Si-Au Reaction to the Mechanism of Silicide Formation. Japanese Journal of Applied Physics, 22, 549-562.
http://dx.doi.org/10.1143/JJAP.22.549
[2] Ito, T. and Gibson, W.M. (1987) Metal/Silicon Reactions Studied by High Energy Ion Scattering. Japanese Journal of Applied Physics, 26, 841-847. http://dx.doi.org/10.1143/JJAP.26.841
[3] Her, Y.-C. and Chen, C.-W. (2007) Crystallization Kinetics of Ultrathin Amorphous Si Film Induced by Al Metal Layer under Thermal Annealing and Pulsed Laser Irradiation. Journal of Applied Physics, 101, Article ID: 043518.
http://dx.doi.org/10.1063/1.2654512
[4] Bokhonov, B. and Korchagin, M. (2000) In Situ Investigation of Stage of the Formation of Eutectic Alloys in Si-Au and Si-Al Systems. Journal of Alloys and Compounds, 312, 238-250.
http://dx.doi.org/10.1016/S0925-8388(00)01173-7
[5] Ehrhardt, J., Klimmer, A., Eisenmenger, J., Müller, Th., Boyen, H.-G., Ziemanna, P., Biskupek, J. and Kaiser, U. (2006) Influence of Ion Induced Amorphicity on the Diffusion of Gold into Silicon. Journal of Applied Physics, 100, Article ID: 063534. http://dx.doi.org/10.1063/1.2259815
[6] Knaepen, W., Detavernier, C., Van Meirhaeghe, R.L., Sweet, J.J. and Lavoie, C. (2008) In-Situ X-Ray Diffraction Study of Metal Induced Crystallization of Amorphous Silicon. Thin Solid Films, 516, 4946-4952.
http://dx.doi.org/10.1016/j.tsf.2007.09.037
[7] Bal, J.K. and Hazra, S. (2007) Interfacial Role in Room-Temperature Diffusion of Au into Si Substrates. Physical Review B, 75, Article ID: 205411. http://dx.doi.org/10.1103/PhysRevB.75.205411
[8] Ashtikar, M.S. and Sharma, G.L. (1995) Structural Investigation of Gold Induced Crystallization in Hydrogenated Amorphous Silicon Thin Films. Japanese Journal of Applied Physics, 34, 5520-5526.
http://dx.doi.org/10.1143/JJAP.34.5520
[9] Chromik, R.R., Zavalij, L., Johnson, M.D. and Cotts, E.J. (2002) Calorimetric Investigation of the Formation of Metastable Silicides in Au/a-Si Thin Film Multilayers. Journal of Applied Physics, 91, 8992-8998.
http://dx.doi.org/10.1063/1.1432774
[10] Wu, J.S., Dhara, S., Wu, C.T., Chen, K.H., Chen, Y.F. and Chen, L.C. (2002) Growth and Optical Properties of Self-Organized Au2Si Nanospheres Pea-Podded in a Silicon Oxide Nanowire. Advanced Materials, 14, 1847-1850.
http://dx.doi.org/10.1002/adma.200290017
[11] Shpyrko, O.G., Streitel, R., Balagurusamy, V.S.K., Grigoriev, A.Y., Deutsch, M., Ocko, B.M., Meron, M., Lin, B. and Pershan, P.S. (2007) Crystalline Surface Phases of the Liquid Au-Si Eutectic Alloy. Physical Review B, 76, Article ID: 245436. http://dx.doi.org/10.1103/PhysRevB.76.245436
[12] Pinardi, A.L., Leake, S.J., Felici, R. and Robinson, I.K. (2009) Formation of an Au-Si Eutectic on a Clean Silicon Surface. Physical Review B, 79, Article ID: 045416.
http://dx.doi.org/10.1103/PhysRevB.79.045416
[13] Schülli, T.U., Daudin, R., Renaud, G., Vaysset, A., Geaymond, O. and Pasturel, A. (2010) Substrate-Enhanced Supercooling in AuSi Eutectic Droplets. Nature, 464, 1174-1177.
http://dx.doi.org/10.1038/nature08986
[14] Chandra, A. and Clemens, B.M.J. (2004) Monodisperse Nanoparticles via Metal Induced Crystallization. Journal of Applied Physics, 96, 6776-6781. http://dx.doi.org/10.1063/1.1812817
[15] Venkatachalam, D.K., Fletcher, N.H., Sood, D.K. and Elliman, R.G. (2009) Self-Assembled Nanoparticle Spirals from Two-Dimensional Compositional Banding in Thin Films. Applied Physics Letters, 94, Article ID: 213110.
http://dx.doi.org/10.1063/1.3143666
[16] Aono, M., Takahashi, M., Takiguchi, H., Okamoto, Y., Kitazawa, N. and Watanabe, Y. (2012) Thermal Annealing of a-Si/Au Superlattice Thin Films. Journal of Non-Crystalline Solids, 358, 2150-2153.
http://dx.doi.org/10.1016/j.jnoncrysol.2011.12.088
[17] Miyazaki, H., Takiguchi, H., Aono, M. and Okamoto, Y. (2012) Influence of Annealing Temperature and Au Concentration on the Electrical Properties of Multilayered a-Ge/Au Films. Journal of Non-Crystalline Solids, 358, 2103-2106.
http://dx.doi.org/10.1016/j.jnoncrysol.2012.01.064
[18] Stockman, M.I. (2010) Nanoscience: Dark-Hot Resonances. Nature, 467, 541-542.
[19] Derkacs, D., Lim, S.H., Matheu, P., Mar, W. and Yu, E.T. (2006) Improved Performance of Amorphous Silicon Solar Cells via Scattering from Surface Plasmon Polaritons in Nearby Metallic Nanoparticles. Applied Physics Letters, 89, Article ID: 093103. http://dx.doi.org/10.1063/1.2336629
[20] Fujiki, A., Uemura, T., Zettsu, N., Akai-Kasaya, M., Saito, A. and Kuwahara, Y. (2010) Enhanced Fluorescence by Surface Plasmon Coupling of Au Nanoparticles in an Organic Electroluminescence Diode. Applied Physics Letters, 96, Article ID: 043307. http://dx.doi.org/10.1063/1.3271773
[21] Cheng, C.W., Sie, E.J., Liu, B., Huan, C.H.A., Sum, T.C., Sun, H.D. and Fan, H.J. (2010) Surface Plasmon Enhanced Band Edge Luminescence of ZnO Nanorods by Capping Au Nanoparticles. Applied Physics Letters, 96, Article ID: 071107. http://dx.doi.org/10.1063/1.3323091
[22] Wu, T.H., Kuo, P.C., Ou, S.L., Chen, J.P., Yen, P.F., Jeng, T.R., Wu, C.Y. and Huang, D.R. (2008) Diffusion and Crystallization Mechanisms of Ge/Au Bilayer Media for Write-Once Optical Disk. Applied Physics Letters, 92, Article ID: 011126. http://dx.doi.org/10.1063/1.2831690
[23] Guzman, J., Boswell-Koller, C.N., Beeman, J.W., Bustillo, K.C., Conry, T., Dubón, O.D., Hansen, W.L., Levander, A. X., Liao, C.Y., Lieten, R.R., Sawyer, C.A., Sherburne, M.P., Shin, S.J., Stone, P.R., Watanabe, M., Yu, K.M., Ager III, J.W., Chrzan, D.C. and Haller, E.E. (2011) Reversible Phase Changes in Ge-Au Nanoparticles. Applied Physics Letters, 98, Article ID: 193101.
http://dx.doi.org/10.1063/1.3584850
[24] Siegel, J., Lyutakov, O., Rybka, V., Kolská, Z. and Svorcík, V. (2011) Properties of Gold Nanostructures Sputtered on Glass. Nanoscale Research Letters, 6, 96-99. http://dx.doi.org/10.1186/1556-276X-6-96
[25] Alvarez, F., Díaz, C.C., Valladares, A.A. and Valladares, R.M. (2002) Radial Distribution Functions of ab Initio Generated Amorphous Covalent Networks. Physical Review B, 65, Article ID: 113108.
http://dx.doi.org/10.1103/PhysRevB.65.113108
[26] Mittemeijer, E.J., Welzel, U. and Kristallogr, Z. (2008) The “State of the Art” of the Diffraction Analysis of Crystallite Size and Lattice Strain. Zeitschrift für Kristallographie, Crystalline Materials, 223, 552-560.
http://dx.doi.org/10.1524/zkri.2008.1213
[27] Warren, B.E. (1990) X-Ray Diffraction. Dover, New York.
[28] Ida, T., Shimazaki, S., Hibino, H. and Toraya, H. (2003) Diffraction Peak Profiles from Spherical Crystallites with Lognormal Size Distribution. Journal of Applied Crystallography, 36, 1107-1115.
http://dx.doi.org/10.1107/S0021889803011580
[29] Robb, D.T. and Privman, V. (2008) Model of Nanocrystal Formation in Solution by Burst Nucleation and Diffusional Growth. Langmuir, 24, 26-35. http://dx.doi.org/10.1021/la702097g
[30] Privman, V. (2008) Diffusional Nucleation of Nanocrystals and Their Self-Assembly into Uniform Colloids. Journal of Optoelectronics and Advanced Materials, 10, 2827-2839.
[31] Nygren, E., Park, B., Goldman, L.M. and Spaepen, F. (1990) Diffusivity of Gold in Amorphous Silicon Measured by the Artificial Multilayer Technique. Applied Physics Letters, 56, 2094-2096. http://dx.doi.org/10.1063/1.102983
[32] Abe, H., Ishibashi, M., Ohshima, K., Suzuki, T., Wuttig, M. and Kakurai, K. (1994) Kinetics of the Martensitic Transition in In-Tl Alloys. Physical Review B, 50, 9020-9024.
http://dx.doi.org/10.1103/PhysRevB.50.9020
[33] Onsager, L. (1944) Crystal Statistics. I. A Two-Dimensional Model with an Order-Disorder Transition. Physical Review, 65, 117-149. http://dx.doi.org/10.1103/PhysRev.65.117
[34] Phu, X.T.P., Ngo, V.T. and Diep, H.T. (2009) Critical Behavior of Magnetic Thin Films. Surface Science, 603, 109-116. http://dx.doi.org/10.1016/j.susc.2008.10.037
[35] Tanaka, T. (2010) Prediction of Phase Diagrams in Nano-Sized Binary Alloys. Materials Science Forum, 653, 55-75.
http://dx.doi.org/10.4028/www.scientific.net/MSF.653.55
[36] Yeum, K.S., Speiser, R. and Poirier, D.R. (1989) Estimation of the Surface Tensions of Binary Liquid Alloys. Metallurgical Transactions B, 20, 693-703.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.