Share This Article:

The Bowing Parameters of CaχMg1-χO Ternary Alloys

Abstract Full-Text HTML XML Download Download as PDF (Size:2600KB) PP. 1546-1551
DOI: 10.4236/jmp.2014.515155    2,756 Downloads   3,193 Views   Citations


On the basis of first principles calculations using density functional theory, we explore the structural and electronic properties of two binaries: CaO and MgO in rock salt structures. Structural properties of the semiconductor CaχMg1-χO alloys are derived from total-energy minimization within the General Gradient Approximation. The band gap bowing parameters dependence is very powerful Calcium composition. The results offer that an average bowing parameter of CaχMg1-χO alloys is b = ~0.583$ eV. We analyzed the volume deformation, charge transfer and structural relaxation effects of the CaχMg1-χO alloys.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Gulebaglan, S. , Dogan, E. , Aycibin, M. , Secuk, M. , Erdinc, B. and Akkus, H. (2014) The Bowing Parameters of CaχMg1-χO Ternary Alloys. Journal of Modern Physics, 5, 1546-1551. doi: 10.4236/jmp.2014.515155.


[1] Erden Gulebaglan, S. (2012) Modern Physics Letters B, 26, 1250199-8.
[2] Mazouza, H.M.A., Belabbesa, A., Zaouib, A. and Ferhat, M. (2010) Superlattices and Microstructures, 48, 560-568.
[3] Moreno-Armenta, M.G., Mancera, L. and Takeuchi, N. (2003) Physica Status Solidi (B), 238, 127-135.
[4] Duan, Y., Qin, L., Tang, G. and Shi, L. (2008) European Physical Journal B, 66, 201-209.
[5] Ponce, S., Bertrand, B., Smet, P.F., Poelman, D., Mikami, M. and Ganze, X. (2013) Optical Materials, 35, 1477-1480.
[6] Albuquerque, E.L. and Vasconcelos, M.S. (2008) Journal of Physics: Conference Series, 042006, 1-4.
[7] Karki Bijiya, B., Bhattarai, D. and Stixrude, L. (2006) Physical Review B, 73, 174208-1:7.
[8] Makaremi, N. and Nourbakhsh, Z. (2013) Journal of Superconductivity and Novel Magnetism, 26, 818-824.
[9] Nishii, J., Ohtomo, A., Ikeda, M., Yamado, Y., Ohtani, K., Ohno, H. and Kawasahi, M. (2006) Applied Surface Science, 252, 2507-2511.
[10] Stolbov, S.V. and Cohen, R.E. (2002) Physical Review B, 65, 092203-3.
[11] Miloua, R., Miloua, F., Kebbab, Z. and Benramdane, N. (2008) ISJAEE, 6, 91-95.
[12] Srivastava, A., Chauhan, M., Singh, R.K. and Padegaonker, R. (2011) Physica Status Solidi B, 248, 1901-1907.
[13] Baroni, S., Corso, A.D., de Gironcoli, S. and Giannozzi, P.
[14] Kohn, W. and Sham, L.J. (1965) Physical Review, 140, 1133-1138.
[15] Perdew, J.P., Burke, K. and Ernzerhof, M. (1996) Physical Review Letters, 77, 3865-3868.
[16] Monkhorst, H.J. and Pack, J.D. (1976) Physical Review B, 13, 5188-5192.
[17] Mehl, M.J., Klein, B.M. and Papaconstantopoulos, D.A. (1995) Intermetallic Compounds: Principles and Practice, Vol. 1: Principles. 195-210.
[18] Fei, Y. (1999) American Mineralogist, 84, 272-276.
[19] Karki, B.B., Stixrude, L., Clark, S.J., Warren, M.C., Ancland, G.J. and Crain, J. (1997) American Mineralogist, 82, 51-60.
[20] Richet, P., Mao, H.K. and Bell, P.M. (1988) Journal of Geophysical Research: Solid Earth, 93, 15279-15288.
[21] Drablia, S., Meradji, H., Ghemid, S., Labidi, S. and Bouhafs, B. (2009) Physica Scripta, 79, Article ID: 045002.

comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.