Share This Article:

Structure and Electrical Properties of Fe2O3-Doped PZT-PZN-PMnN Ceramics

Abstract Full-Text HTML Download Download as PDF (Size:2999KB) PP. 1258-1263
DOI: 10.4236/jmp.2014.514126    2,895 Downloads   3,342 Views   Citations

ABSTRACT

The 0.8Pb(Zr0.48Ti0.52)O3 – 0.125Pb(Zn1/3Nb2/3)O3 – 0.075Pb(Mn1/3Nb2/3)O3 + x wt% Fe2O3 ceramics (PZT-PZN-PMnN), where x = 0 ÷ 0.35, has been prepared by two-stage calcination method. The effect of Fe2O3 content on the crystal structure and electrical properties of ceramics has been investigated. The results of X-ray diffraction (XRD) show that all samples have pure perovskite phase with tetragonal structure, the c/a ratio increases with increasing Fe2O3 content. At x = 0.25, electrical properties of ceramics are best: the density (r) of 7.86 g/cm3, the electromechanical coupling factor (kp) of 0.64, the dielectric constant (εr) of 1400, the dielectric loss (tand) of 0.003, the mechanical quality factor (Qm) of 1450, the piezoelectric constant (d31) of 155 pC/N, and the remanent polarization (Pr) of 37 μC/cm2, which makes it as a promising material for high power piezoelectric devices.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Vuong, L. and Gio, P. (2014) Structure and Electrical Properties of Fe2O3-Doped PZT-PZN-PMnN Ceramics. Journal of Modern Physics, 5, 1258-1263. doi: 10.4236/jmp.2014.514126.

References

[1] Fan, H. and Kim, H. (2002) Journal of Applied Physics, 91, 317-322.
http://dx.doi.org/10.1063/1.1421036
[2] Xu, Y. (1991) Ferroelctric Materials and Their Applications (North-Holland, Amsterdam-London-Newyork-Tokyo).
[3] Seo, S.B., Lee, S.H., Yoon, C.B., Park, G.T. and Kim, H.E. (2004) Journal of the American Ceramic Society, 87, 1238-1243.
http://dx.doi.org/10.1111/j.1551-2916.2004.tb20095.x
[4] Yan, Y.K., Kumar, A., Correa, M., Cho, K.-H., Katiyar, R.S. and Priya, S. (2012) Applied Physics Letters, 100, Article ID: 152902.
http://dx.doi.org/10.1063/1.3703124
[5] Gao, F., Cheng, L., Hong, R., Liu, J., Wang, C. and Tian, C. (2009) Ceramics International, 35, 1719-1723.
[6] Kim, Y.H., Ryu, H., Cho, Y.-K., Lee, H.-J. and Nahm, S. (2013) Journal of the American Ceramic Society, 96, 31-317.
http://dx.doi.org/10.1111/j.1551-2916.2012.05461.x
[7] Zhu, M.K., Lu, P.X., Hou, Y.D., Wang, H. and Yan, H. (2005) Journal of Materials Research, 20, 2670-2675.
http://dx.doi.org/10.1557/JMR.2005.0339
[8] Zhu, M.K., Lu, P.X., Hou, Y.D., Song, X.M., Wang, H. and Yan, H. (2006) Journal of the American Ceramic Society, 89, 3739-3744.
http://dx.doi.org/10.1111/j.1551-2916.2006.01281.x
[9] Li, J., He, Z.B. and Damjanovic, D. (2009) Applied Physics Letters, 95, Article ID: 012905.
http://dx.doi.org/10.1063/1.3173198
[10] Du, J., Qiu, J., Zhu, K., et al. (2012) Journal of Materials Letters, 66, 507-510.
[11] L.D. Vuong, Gio, P.D., Chuong, T.G.V., Trang, D.T.H., Hung, D.V. and Duong, N.T. (2013) International Journal of Materials and Chemistry, 3, 39-43.
[12] Vuong, L.D. and Gio, P.D. (2013) International Journal of Materials Science and Applications, 2, 89-93.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.