Share This Article:

Mixture Regression Estimators Using Multi-Auxiliary Variables and Attributes in Two-Phase Sampling

Abstract Full-Text HTML Download Download as PDF (Size:2567KB) PP. 355-366
DOI: 10.4236/ojs.2014.45035    2,220 Downloads   2,661 Views   Citations

ABSTRACT

In this paper, we have developed estimators of finite population mean using Mixture Regression estimators using multi-auxiliary variables and attributes in two-phase sampling and investigated its finite sample properties in full, partial and no information cases. An empirical study using natural data is given to compare the performance of the proposed estimators with the existing estimators that utilizes either auxiliary variables or attributes or both for finite population mean. The Mixture Regression estimators in full information case using multiple auxiliary variables and attributes are more efficient than mean per unit, Regression estimator using one auxiliary variable or attribute, Regression estimator using multiple auxiliary variable or attributes and Mixture Regression estimators in both partial and no information case in two-phase sampling. A Mixture Regression estimator in partial information case is more efficient than Mixture Regression estimators in no information case.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

John Kung’u, J. , Chumba, G. and Odongo, L. (2014) Mixture Regression Estimators Using Multi-Auxiliary Variables and Attributes in Two-Phase Sampling. Open Journal of Statistics, 4, 355-366. doi: 10.4236/ojs.2014.45035.

References

[1] Neyman, J. (1938) Contribution to the Theory of Sampling Human Populations. Journal of the American Statistical Association, 33, 101-116.
http://dx.doi.org/10.1080/01621459.1938.10503378
[2] Hansen, M.H. and Hurwitz, W.N. (1943) On the Theory of Sampling from Finite Populations. Annals of Mathematical Statistics, 14, 333-362.
http://dx.doi.org/10.1214/aoms/1177731356
[3] Cochran, W.G. (1940) The Estimation of the Yields of the Cereal Experiments by Sampling for the Ratio of Grain to Total Produce. Journal of Agricultural Science, 30, 262-275.
http://dx.doi.org/10.1017/S0021859600048012
[4] Watson, D.J. (1937) The Estimation of Leaf Areas. Journal of Agricultural Science, 27, 474.
http://dx.doi.org/10.1017/S002185960005173X
[5] Olikin, I. (1958) Multivariate Ratio Estimation for Finite Population. Biometrika, 45, 154-165.
http://dx.doi.org/10.1093/biomet/45.1-2.154
[6] Raj, D. (1965) On a Method of Using Multi-Auxiliary Information in Sample Surveys. Journals of the American Statistical Association, 60, 154-165.
http://dx.doi.org/10.1080/01621459.1965.10480789
[7] Robson, D.S. (1952) Multiple Sampling of Attributes. Journal of the American Statistical Association, 47, 203-215.
http://dx.doi.org/10.1080/01621459.1952.10501164
[8] Zahoor, A., Muhhamad, H. and Munir, A. (2009) Generalized Multivariate Ratio Estimator Using Multiple Auxiliary Variables for Multi-Phase Sampling. Pakistan Journal of Statistic, 26, 569-583.
[9] Zahoor, A., Muhhamad, H. and Munir, A. (2009) Generalized Regression-Cum-Ratio Estimators for Two Phase Sampling Using Multiple Auxiliary Variables. Pakistan Journal of Statistics, 25, 93-106.
[10] Simiuddin, M. and Hanif, M. (2007) Estimation of Population Mean in Single and Two Phase Sampling with or without Additional Information. Pakistan Journal of Statistics, 23, 99-118.
[11] Jhajj, H.S., Sharma, M.K. and Grover, L.K. (2006) A Family of Estimator of Population Mean Using Information on Auxiliary Attributes. Pakistan Journal of Statistics, 22, 43-50.
[12] Naik, V.D. and Gupta, P.C. (1996) A Note on Estimation of Mean with Known Population of Auxiliary Character. Journal of the Indian Society of Agricultural Statistics, 48, 151-158.
[13] Rajesh, S., Pankaj, C., Nirmala, S. and Florentins, S. (2007) Ratio-Product Type Exponential Estimator for Estimating Finite Population Mean Using Information on Auxiliary Attributes. Renaissance High Press, USA.
[14] Bahl, S. and Tuteja, R.K. (1991) Ratio and Product Type Estimator. Information and Optimization Science, 12, 159-163. http://dx.doi.org/10.1080/02522667.1991.10699058
[15] Hanif, M., Haq, I.U. and Shahbaz, M.Q. (2009) On a New Family of Estimator Using Multiple Auxiliary Attributes. World Applied Science Journal, 11, 1419-1422.
[16] Moeen, M., Shahbaz, Q. and HanIf, M. (2012) Mixture Ratio and Regression Estimators Using Multi-Auxiliary Variable and Attributes in Single Phase Sampling. World Applied Sciences Journal, 18, 1518-1526.
[17] Kung’u, J. and Odongo, L. (2014) Ratio-Cum-Product Estimator Using Multiple Auxiliary Attributes in Single Phase Sampling. Open Journal of Statistics, 4, 239-245.
http://dx.doi.org/10.4236/ojs.2014.44023
[18] Kung’u, J. and Odongo, L. (2014) Ratio-Cum-Product Estimator Using Multiple Auxiliary Attributes in Two-Phase Sampling. Open Journal of Statistics, 4, 246-257.
http://dx.doi.org/10.4236/ojs.2014.44024
[19] Arora, S. and Bansi, Lal. (1989) New Mathematical Statistics. Satya Prakashan, New Delhi.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.