Share This Article:

Threshold Corrections to the MSSM Finite-Temperature Higgs Potential

Abstract Full-Text HTML Download Download as PDF (Size:940KB) PP. 301-322
DOI: 10.4236/jmp.2011.25039    4,341 Downloads   7,960 Views   Citations

ABSTRACT

In the minimal supersymmetric standard model (MSSM) the one-loop finite-temperature corrections from the squark-Higgs bosons sector are calculated, the effective two-Higgs-doublet potential is reconstructed and possibilities of the electroweak phase transition in full MSSM ( , , , , , , ) parameter space are studied. At large values of and of around 1 TeV, favored indirectly by LEP2 and Teva-tron data, the threshold finite-temperature corrections from triangle and box diagrams with intermediate third generation squarks are very substantial. Four types of bifurcation sets are defined for the two-Higgs-doublet potential. High sensitivity of the low-temperature evolution to the effective two-doublet and the MSSM squark sector parameters is observed, but rather extensive regions of the full MSSM parameter space allow the first-order electroweak phase transition respecting the phenomenological constraints at zero temperature. As a rule, these regions of the MSSM parameter space are in line with the case of a light stop quark.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

M. Dolgopolov, M. Dubinin and E. Rykova, "Threshold Corrections to the MSSM Finite-Temperature Higgs Potential," Journal of Modern Physics, Vol. 2 No. 5, 2011, pp. 301-322. doi: 10.4236/jmp.2011.25039.

References

[1] V. A. Rubakov and M. E. Shaposhnikov, “Electroweak Baryon Number Non-Conservation in the Early Universe and in High Energy Collisions,” Uspekhi Fizicheskikh Nauk, Vol. 166, No. 5, 1996, pp. 493-537. doi:10.1070/PU1996v039n05ABEH000145 A. G. Cohen, D. B. Kaplan and A. E. Nelson, “Progress in Electroweak Baryogenesis,” Annual Review of Nuclear and Particle Science, Vol. 43, 1993, pp. 27-70. doi:10.1146/annurev.ns.43.120193.000331 A. D. Dolgov, “Non-GUT Baryogenesis,” Physics Reports, Vol. 222, No. 6, 1
[2] A. D. Linde, “Phase Transitions in Gauge Theories and Cosmology,” Reports on Progress in Physics, Vol. 42, No. 3, 1979, pp. 389-437. doi:10.1088/0034-4885/42/3/001 D. A. Kirzhnits and A. D. Linde, “Symmetry Behavior in Gauge Theories,” Annals of Physics, Vol. 101, No. 1, 1976, pp. 195-238. doi:10.1016/0003-4916(76)90279-7 S. Weinberg, “Gauge and Global Symmetries at High Temperature,” Physical Review, Vol. D9, 1974, pp. 3357-3378. L. Dolan and R. Jackiw, “Symmetry Behavior at Finite Temperature,” Physic
[3] L. Fromme, S. J. Huber and M. Seniuch, “Baryogenesis in the Two-Higgs Doublet Model,” Journal of High Energy Physics, Vol. 2006, No. 11, 2006. doi:10.1088/1126-6708/2006/11/038 Y. Okada, et al. “Electroweak Baryogenesis and Quantum Corrections to the Higgs Potential,” Proceedings of CERN Workshop on CP Studies and Non-Sandard Higgs Physics, In: S. Kraml, G. Azuelos, D. Dominici, J. Ellis, G. Grenier, H. Haber, J. S. Lee, D. Miller, A. Pilaftsis and W. Porod, Eds., CERN Yellow Report 2006-009, 2006, pp. 4
[4] M. Carena, G. Nardini, M. Quiros and C. E. M. Wagner, “The Baryogenesis Window in the MSSM,” Nuclear Physics B, Vol. 812, No. 1-2, 2009, pp. 243-263. doi:10.1016/j.nuclphysb.2008.12.014 M. Carena, G. Nardini, M. Quiros and C. E. M. Wagner, “The Effective Theory of the Light Stop Scenario,” Journal of High Energy Physics 10, Vol. 2008, 2008. doi:10.1088/1126-6708/2008/10/062 M. Carena, M. Quiros and C. E. M. Wagner, “Opening the Window for Electroweak Baryogenesis,” Physics Letters B, Vol. 380, No. 1-2,
[5] A. I. Bochkarev and M. E. Shaposhnikov, “Electroweak Production of Baryon Asymmetry and Upper Bounds on the Higgs and Top Masses,” Modern Physics Letters A, Vol. 2, No. 6, 1987, pp. 417-427. doi:10.1142/S0217732387000537 M. E. Shaposhnikov, “Possible Appearance of the Baryon Asymmetry of the Universe in an Electroweak Theory,” Journal of Experimental and Theoretical Physics Letters, Vol. 44, 1986, pp. 465-468.
[6] A. Brignole, J. R. Espinosa, M. Quiros and F. Zwirner, “Aspects of the Electroweak Phase Transition in the Minimal Supersymmetric Standard Model,” Physics Letters B, Vol. 324, No. 2, 1994, pp. 181-191. doi:10.1016/0370-2693(94)90405-7
[7] K. Kajantie, M. Laine, K. Rummukainen and M. Shaposhnikov, “The Electroweak Phase Transition: A Non-Perturbative Analysis,” Nuclear Physics B, Vol. 466, No. 1-2, 1996, pp. 189-258. doi:10.1016/0550-3213(96)00052-1 K. Kajantie, K. Rummukainen and M. Shaposhnikov, “A Lattice Monte Carlo Study of the Hot Electroweak Phase Transition,” Nuclear Physics B, Vol. 407, No. 2, 1993, pp. 356-372. doi:10.1016/0550-3213(93)90062-T
[8] D. J. Gross, R. D. Pisarski and L. G. Yaffe, “QCD and Instantons at Finite Temperature,” Reviews of Modern Physics, Vol. 53, No. 1, 1981, pp. 43-80. doi:10.1103/RevModPhys.53.43 A. D. Linde, “Infrared Problem in Thermodynamics of the Yang-Mills Gas,” Physics Letters B, Vol. 96, No. 3-4, 1980, pp. 289-292. doi:10.1016/0370-2693(80)90769-8
[9] K. Kajantie, M. Laine, K. Rummukainen and M. Shaposhnikov, “Generic Rules for High Temperature Dimensional Reduction and Their Application to the Standard Model,” Nuclear Physics B, Vol. 458, No. 1-2, 1996, pp. 90-136. doi:10.1016/0550-3213(95)00549-8 K. Farakos, K. Kajantie, K. Rummukainen and M. Shaposhnikov, “3-D Physics and the Electroweak Phase Transition: Perturbation Theory,” Nuclear Physics B, Vol. 425, No. 1-2, 1994, pp. 67-109. doi:10.1016/0550-3213(94)90173-2
[10] A. Jakovac, K. Kajantie and A. Patkos, “Hierarchy of Effective Field Theories of Hot Electroweak Matter,” Physical Review D, Vol. 49, No. 12, 1994, pp. 6810-6821. doi:10.1103/PhysRevD.49.6810 S. Nadkarni, “Dimensional Reduction in Finite-Tempe- rature Quantum Chromodynamics,” Physical Review D, Vol. 27, No. 4, 1983, pp. 917-931. doi:10.1103/PhysRevD.27.917 T. Appelquist and R. D. Pisarski, “High-Temperature Yang-Mills Theories and Three-Dimensional Quantum Chromodynamics,” Physical Review D, Vol. 23, No
[11] M. Laine, “Erratum to ‘Effective Theories of MSSM at High Temperature’ [Nucl. Phys. B, 481 (1996) 43-84],” Nuclear Physics B, Vol. 548, No. 1-3, 1999, pp. 637-638. doi:10.1016/S0550-3213(99)00139-X
[12] G. R. Farrar and M. Losada, “SUSY and the Electroweak Phase Transition,” Physics Letters B, Vol. 406, No. 1-2, 1997, pp. 60-65. doi:10.1016/S0370-2693(97)00663-1 M. Losada, “High Temperature Dimensional Reduction of the MSSM and Other Multiscalar Models,” Physical Review D, Vol. 56, No. 5, 1997, pp. 2893-2913. doi:10.1103/PhysRevD.56.2893
[13] J. M. Cline and K. Kainulainen, “Supersymmetric Electroweak Phase Transition: Beyond Perturbation Theory,” Nuclear Physics B, Vol. 482, No. 1-2, 1996, pp. 73-91. doi:10.1016/S0550-3213(96)00519-6
[14] E. Akhmetzyanova, M. Dolgopolov and M. Dubinin, “Higgs Bosons in the Two-Doublet Model with CP Violation,” Physical Review D, Vol. 71, No. 7, 2005, p. 075008. doi:10.1103/PhysRevD.71.075008
[15] E. Akhmetzyanova, M. Dolgopolov and M. Dubinin, “Violation of CP Invariance in the Two-Doublet Higgs Sector of the MSSM,” Physics of Particles and Nuclei, Vol. 37, No. 5, 2006, pp. 677-734. doi:10.1134/S1063779606050029
[16] J. F. Gunion and H. E. Haber, “The CP Conserving Two-Higgs-Doublet Model: The Approach to the Decoupling Limit,” Physical Review D, Vol. 67, No. 7, 2003, p. 075019. M. Dubinin and A. Semenov, “Triple and Quartic Interactions of Higgs Bosons in the Two-Higgs-Doublet Model with CP Violation,” European Physical Journal C, Vol. 28, No. 2, 2003, pp. 223-236. doi:10.1140/epjc/s2003-01141-5 F. Boudjema and A. Semenov, “Measurements of the Supersymmetric Higgs Self-Couplings and the Reconstruction of the Higgs P
[17] L. Vergara, “Evaluating One-Loop Integrals at Finite Temperature,” Journal of Physics A, Vol. 30, No. 19, 1997, pp. 6977-6980. doi:10.1088/0305-4470/30/19/031
[18] P. Amore, “One-Loop Integrals at Finite Temperature,” Journal of Physics A, Vol. 38, No. 29, 2005, pp. 6463-6472. doi:10.1088/0305-4470/38/29/003
[19] P. Amore, “Convergence Acceleration of Series through a Variational Approach,” Journal of Mathematical Analysis and Applications, Vol. 323, No. 1, 2006, pp. 63-77. M. Abramowitz and I. Stegun, “Handbook of Mathematical Functions,” Dover Publications, New York, 1964.
[20] H. Haber, R. Hempfling and A. H. Hoang, “Approximating the Rradiatively Corrected Higgs Mass in the Minimal Supersymmetric Model,” Zeitschrift für Physik C, Vol. 75, No. 3, 1997, pp. 539-554. doi:10.1007/s002880050498
[21] S. Y. Choi, M. Drees and J. S. Lee, “Loop Corrections to the Neutral Higgs Boson Sector of the MSSM with Explicit CP Violation,” Physics Letters B, Vol. 481, No. 1, 2000, pp. 57-66. doi:10.1016/S0370-2693(00)00421-4
[22] J. C. Collins, “Renormalization,” Cambridge University Press, Cambridge, 1984. doi:10.1017/CBO9780511622656
[23] E. Akhmetzyanova, M. Dolgopolov and M. Dubinin, “Supersymmetric Corrections to the Higgs Sector in the Minimal Supersymmetric Standard Model Featuring Explicit CP Violation,” Physics of Atomic Nuclei, Vol. 70, No. 9, 2007, pp. 1549-1552. doi:10.1134/S1063778807090098
[24] C. Balazs, M. Carena, A. Menon, D. Morrissey and C. E. M. Wagner, “The Supersymmetric Origin of Matter,” Physical Review D, Vol. 71, No. 7, 2005, p. 075002. doi:10.1103/PhysRevD.71.075002 S. Heinemeyer and M. Velasco, “Exploring Complex Phases of the MSSM at Future Colliders,” Proceedings of 2005 ILC Workshop, Stanford, 18-22 March 2005.
[25] M. Carena, J. Ellis, A. Pilaftsis and C. Wagner, “CP-Violating MSSM Higgs Bosons in the Light of LEP 2,” Physics Letters B, Vol. 495, No. 1-2, 2000, pp. 155-163. doi:10.1016/S0370-2693(00)01215-6
[26] R. Gilmore, “Catastrophe Theory for Scientists and Engineers,” John Wiley & Sons, New York-Chichester- Brisbane-Toronto, 1981. V. I. Arnold, “Critical Points of Smooth Functions and Their Canonical Forms,” Uspekhi Matematicheskikh Nauk (USSR), Vol. 30, No. 5, 1975, pp. 3-65. R. Thom, “Structural Stability and Morphogenesis,” Reading, Benjamin, 1975. M. Morse, “The Critical Points of a Function of n Variables,” Transactions of the American Mathematical Society, Vol. 33, 1931, pp. 72-91.
[27] R. Peccei and H. Quinn, “CP Conservation in the Presence of Pseudoparticles,” Physical Review Letters, Vol. 38, No. 25, 1977, pp. 1440-1443. doi:10.1103/PhysRevLett.38.1440
[28] A. Kusenko, P. Langacker and G. Segre, “Phase Transitions and Vacuum Tunneling into Charge- and ColorBreaking Minima in the MSSM,” Physical Review D, Vol. 54, No. 9, 1996, pp. 5824-5834. doi:10.1103/PhysRevD.54.5824
[29] I. Affleck and M. Dine, “A New Mechanism for Baryogenesis,” Nuclear Physics B, Vol. 249, No. 2, 1985, pp. 361-380. doi:10.1016/0550-3213(85)90021-5
[30] S. Wolfram, “Mathematica (symbolic manipulation package).” http://www.wolfram.com
[31] S. Abdullin, et al. “Summary of the CMS Potential for the Higgs Boson Discovery,” European Physical Journal C, Vol. 39S2, No. 41, 2005, pp. 41-61.
[32] H. Haber, R. Hempfling, “The Renormalization-Group Improved Higgs Sector of the Minimal Supersymmetric Model,” Physical Review D, Vol. 48, No. 9, 1993, pp. 4280-4309. doi:10.1103/PhysRevD.48.4280

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.