Novel Activated Carbon Monoliths for Methane Adsorption Obtained from Coffee Husks
Liliana Giraldo, Juan Carlos Moreno-Piraján
.
DOI: 10.4236/msa.2011.25043   PDF    HTML     9,063 Downloads   16,334 Views   Citations

Abstract

Methane adsorption by different forms of activated carbon obtained from coffee husks, including monolith honeycomb and disc types, was studied by activation with zinc salts and potassium hydroxide at 298.15 K and 303.15 K and pressures up to 30.00 atm in a volumetric adsorption apparatus. We observed increased methane adsorption capacity on a mass basis in the different activated carbon monoliths with increasing surface area, total pore volume and micropore volume, with the honeycomb type displaying the highest methane absorption capacity. The maximum volumetric methane uptake by the synthesised carbon monoliths was observed to be 130 V/V at 298.15 K and 30.00 atm for honeycomb monoliths synthesised with zinc chloride (ZnCl2) and Polyvinyl alcohol (PVA) as the binder. Adsorption calorimetry results were used to describe the interaction between guest molecules and the adsorbent at low surface coverage and the energetic heterogeneous surface nature of the adsorbent.

Share and Cite:

L. Giraldo and J. Moreno-Piraján, "Novel Activated Carbon Monoliths for Methane Adsorption Obtained from Coffee Husks," Materials Sciences and Applications, Vol. 2 No. 5, 2011, pp. 331-339. doi: 10.4236/msa.2011.25043.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] [1] E. N. Rudisill, J. J. Jacskaylo and M. D. LeVan, “Coad- sorption of Hydrocarbons and Water on BPL Activated Carbon,” Industrial & Engineering Chemistry Research, Vol. 31 No. 4, April 1992, pp. 1122-1130. doi:10.1021/ie00004a022
[2] R. N. Eissman and M. D. LeVan, “Coadsorption of Organic Compounds and Water Vapor on BPL Activated Carbon. 2. 1,1,2-Trichloro-1,2,2-Trifluoroethane and Dichloro-methane,” Industrial & Engineering Chemistry Research, Vol. 32, No. 11, November 1993, pp. 2752- 2757. doi:10.1021/ie00023a043
[3] B. P. Russell and M. D. LeVan, “Coadsorption of Organic Compounds and Water Vapor on BPL Activated Carbon. 3. Ethane, Propane, and Mixing Rules,” Industrial & Engineering Chemistry Re-search, Vol. 36, No. 6, June 1997, pp. 2380-2389. doi:10.1021/ie960533+
[4] S. M. Taqvi, W. S. Appel and M. D. LeVan, “Coadsorption of organic compounds and water vapor on BPL activated carbon. 4. Methanol, Ethanol, Propanol, Butanol, and Modeling,” Industrial & Engineering Chemistry Research, Vol. 38, No. 1, De-cember 1999, pp. 240-250. doi:10.1021/ie980324k
[5] L. Giraldo and J. C. Moreno-Piraján, “Synthesis of Acti- vated Carbon Honeycomb Monoliths under Different Conditions for the Adsorption of Methane,” Adsorption Science and Technology, Vol. 27, No. 3, November 2009, pp. 255-265. doi:10.1260/026361709789868901
[6] E. Costa, J. L. Sotelo, G. Calleja and C. Marron, “Adsorp-tion of Binary and Ternary Hydrocarbon Gas Mixtures on Activated Carbon: Experimental Determination and Theoretical Prediction of the Ternary Equilibrium Data,” American Institute of Chemical Engineers Journal, Vol. 27, No. 1, January 1981, pp. 5-12. doi:10.1021/la980492h
[7] I. L. Salame and T. J. Ban-dosz, “Experimental Study of Water Adsorption on Acti-vated Carbons,” Langmuir, Vol. 15, No. 2, December 1999, pp. 587-593.
[8] R. T. Yang, “Gas Separation by Adsorption Processes,” Imperial College Press, London, 1997.
[9] D. G. Hartzog and S. Sircar, “Sensitivity of PSA Process Performance to Input Variables,” American Institute of Chemical Engineers Annual Meeting, St. Louis, July 1993.
[10] M. S. Balathanigaimani, W. G. Shim, J. W. Lee and H. Moon, “Adsorption of Methane on Novel Corn Grain- Based Carbon Monoliths,” Micro-porous and Mesoporous Materials, Vol. 119, No. 1-3, March 2009, pp. 47-52. doi:10.1016/j.micromeso.2008.09.034
[11] A. Perrin, A. Celzard, A. Albiniak, M. Jasienko-Halat, J. F. Marêché and G. Furdin, “NaOH Activation of Anth- racites: Effect of Hydroxide Content on Pore Textures and Methane Storage Ability,” Microporous and Meso- porous Materials, Vol. 81, No. 1-3, June 2005, pp. 31-40. doi:10.1016/j.micromeso.2005.01.015
[12] D. Lozano-Castello, J. Alca?iz-Monge, M. A. de la Casa- Lillo, D. Cazorla-Amoros and A. Linares-Solano, “Advances in the Study of Methane Storage in Porous Carbonaceous Materials,” Fuel, Vol. 84, No. 1-4, September 2002, pp. 1777-1803. doi:10.1016/S0016-2361(02)00124-2
[13] V. C. Menon and S. Komarneni, “Porous Adsorbents for Vehicular Natural Gas. A Review,” Journal of Porous Materials, Vol. 5, No.1, 1998, pp. 43-58. doi:10.1023/A:1009673830619
[14] R. Basumatary, P. Dutta, B. Prasad and K. Srinivasan, “Thermal Modeling of Activated Carbon Based Adsorptive Natural Gas Storage System,” Carbon, Vol. 43, No. 3, January 2005, pp. 541-549. doi:10.1016/j.carbon.2004.10.016
[15] T. D. Burchell, “Carbon Materials for Advanced Technologies,” Pergamon Press, Elmsford, 1999.
[16] D. F. Quinn and J. A. MacDonald, “Natural Gas Storage,” Carbon, Vol. 30, No. 7, February 1992, pp. 1097-1103. doi:10.1016/0008-6223(92)90141-I
[17] J. Wegrzyn and M. Gurevich, “Adsorbent Storage of Natural Gas,” Applied Energy, Vol. 55, No. 2, October 1996, pp. 71-83. doi:10.1016/S0306-2619(96)00015-3
[18] J. Sun, M. J. Rood, M. Rostam-Abadi and A. A. Lizzio, “Natural Gas Storage with Activated Carbon from a Bitu- minous Coal,” Gas Separation & Purification, Vol. 10, No. 2, June 1996, pp. 91-96. doi:10.1016/0950-4214(96)00009-6
[19] S. Sircar and D. V. C?o, “Heat of Adsorption,” Chemical Engineering & Technology, Vol. 25, No. 10, October 2002, pp. 945-948. doi:10.1002/1521-4125(20021008)25:10<945::AID-CEAT945>3.0.CO;2-F
[20] J. A. F. MacDonald and D. F. Quinn, “Carbon Absorbents for Natural Gas Storage,” Fuel, Vol. 77, No. 1-2, January 1998, pp. 61-64. doi:10.1016/S0016-2361(97)00128-2
[21] J. W. Lee, H. C. Kang, W. G. Shim, C. Kim and H. Moon, “Methane Adsorption on Multi-Walled Carbon Nanotube at (303.15, 313.15, and 323.15) K,” Journal of Chemical & Engineering Data, Vol. 51, No. 3, February 2006, pp. 963-967. doi:10.1021/je050467v
[22] M. S. Balathanigaimani, H. C. Kang, W. G. Shim, J. W. Lee, and H. Moon, “Preparation of Powdered Activated Carbon from Rice Husk and Its Methane Adsorption Properties,” Korean Journal of Chemical Engineering, Vol. 23, No. 4 , March 2006, pp. 663-668. doi:10.1007/BF02706811
[23] J. W. Lee, M. S. Balathanigaimani, H. C. Kang, W. G. Shim, C. Kim and H. Moon, “Methane Storage on Phe- nol-Based Activated Carbons at (293.15, 303.15, and 313.15) K,” Journal of Chemical & Engineering Data, Vol. 52, No. 1, January 2007, pp. 66-70. doi:10.1021/je060218m
[24] M. S. Balathanigaimani, M. J. Lee, W. G. Shim, J. W. Lee and H. Moon, “Charge and Discharge of Methane on Phenol-Based Carbon Monolith,” Adsorption, Vol. 14, No. 4-5, May 2008, pp. 525-532. doi:10.1007/s10450-008-9131-z
[25] J. C. Moreno-Piraján and L. Giraldo, “Influence of Ther- mal Insulation of the Surroundings on the Response of the Output Electrical Signal in a Heat Conduction calorimetric Unit,” Instrumentation Science & Technology, Vol. 33, No. 4, July 2005, pp. 415-425.
[26] M. Huertemendia, L. Giraldo, D. Parra and J. C. Moreno- Piraján, “Adsorption Microcalorimeter and Its Software: Design for the Establishment of Parameters Correspond- ing to Different Models of Adsorption Isotherms,” In- strumentation Science & Technology, Vol. 33, No. 6, November 2005, pp. 645-659.
[27] D. K. Steckler, R. N. Goldberg, Y. B. Tewari and T. J. Buckley, “High Precision Microcalorimetry: Apparatus, Procedures, and Biochemical Applications,” Journal of the National Bureau of Standards, Vol. 91, 1986, pp. 113-121.
[28] R. S. Gunn, “Comparison Standards for Solution Calo- rimetry,” The Journal of Physical Chemistry, Vol. 69, No. 9, September 1965, pp. 2902-2913. doi:10.1021/j100893a015
[29] D. J. Russell, D. Thomas and L. D. Hansen, “Batch Calo- rimetry with Solids, Liquids and Gases in Less than 1 mL Total Volume,” Thermochimica Acta, Vol. 446, No. 1-2, July 2006, pp. 161-167. doi:10.1016/j.tca.2006.02.021
[30] J. Lerchner, G. Wolf, C. Auguet and V. Torra, “Accuracy in Integrated Circuit (IC) Calorimeters,” Thermochimica Acta, Vol. 382, No. 1-2, January 2002, pp. 65-76. doi:10.1016/S0040-6031(01)00738-9
[31] M. S. Balathanigaimani, W. G. Shim, M. J. Lee, J. W. Lee, C. Kim and H. Moon, “Highly Porous Electrodes from Novel Corn Grains-Based Activated Carbons for Electrical Double Layer Capacitors,” Electrochemistry Communications, Vol. 10, No. 6, June 2008, pp. 868-871. doi:10.1016/j.elecom.2008.04.003
[32] J. Lerchner, A. Wolf, G. Wolf and I. Fernandez, “Chip Calorimeters for the Investigation of Liquid Phase Reactions: Design Rules,” Thermochimica Acta, Vol. 446, No. 1-2, July 2006, pp. 168-175. doi:10.1016/j.tca.2006.04.020
[33] E. Garrone, G. Ghiotti, E. Giamello and B. Fubini, “En- tropy of adsorption by microcalorimetry. Part 1.—Quasi- ideal chemisorption of CO onto various oxidic systems,” Journal of the Chemical Society, Faraday Transactions, Vol. 77, No.11, 1981, pp.2613-2620.
[34] L. Giraldo, J. I. Huertas, A. Valencia and J. C. Moreno- Piraján, “A Heat Conduction Microcalorimeter for Deter- mination of the Immersion Heats of Activated Carbon into Aqueous Solutions,” Instrumentation Science & Technology, Vol. 31, No. 4, January 2003, pp. 385-397. doi:10.1081/CI-120025573
[35] O. Ioannidou and A. Zabanitou, “Agricultural Residues as Precursors for Activated Carbon Production—A Review,” Renewable and Sustainable Energy Reviews, Vol. 11, No. 9, 2007, December 2007, pp. 1966-2005.
[36] K. Inomata, K. Kanazawa, Y. Urabe, H. Hosono and T. Araki, “Natural Gas Storage in Activated Carbon Pellets without a Binder,” Carbon, Vol. 40, No. 1, January 2002, pp. 87-93. doi:10.1016/S0008-6223(01)00084-7
[37] M. S. Balathanigaimani, W. G. Shim, J. W. Lee, K. H. Park and H. Moon, “Effects of Structural and Surface Energetic Heterogeneity Properties of Novel Corn Grain-Based Activated Carbons on Dye Adsorption,” Microporous and Mesoporous Materials, Vol. 118, No. 1-3, February 2009, pp. 232-238. doi:10.1016/j.micromeso.2008.08.028
[38] D. Lozano-Castelló, D. Carzola-Amoros and A. Linares- Solano, “Usefulness of CO2 Adsorption at 273 K for the Characterization of Porous Carbons,” Carbon, Vol. 42, No. 7, February 2004, pp. 1233-1242.
[39] D. C. S. Azevedo, J. C. S. Arújo, M. Bastos-Neto, A. E. B. Torres, E. F. Jaguarible and C. L. Cavalcante, “Micropo- rous Activated Carbon Prepared from Coconut Shells Using Chemical Activation with Zinc Chloride,” Microporous and Mesoporous Materials, Vol. 100, No. 1-3, March 2007, pp. 361-364. doi:10.1016/j.micromeso.2006.11.024
[40] M. J. Paruchner and F. Rodríguez-Reinoso, “Preparation of Granular Activated Carbons for Adsorption of Natural Gas,” Microporous and Mesoporous Materials, Vol. 109, No. 1-3. March 2008, pp. 581-584. doi:10.1016/j.micromeso.2007.04.046
[41] H. J. Zhang, S. G. Chen and S. Guo, “Preparation of Natural Gas Adsorbents from High-Sulfur Petroleum Coke,” Fuel, Vol. 87, No. 3, March 2008, pp. 304-311. doi:10.1016/j.fuel.2007.05.002
[42] M. Bastos-Neto, D. V. Canabrava, A. E. B. Torres, E. Rodriguez-Castellon, A. Jimenez- Lopez, D. C. S. Aze- vedo and C. L. Cavalcante, “Effects of Textural and Sur- face Characteristics of Microporous Activated Carbons on the Methane Adsorption Capacity at High Pressures,” Ap- plied Surface Science, Vol. 253, No. 13, April 2007, pp. 5721-5725. doi:10.1016/j.apsusc.2006.12.056
[43] A. Celzard and V. Fierro, “Preparing a Suitable Material Designed for Methane Storage: A Comprehensive Re- port,” Energy Fuels, Vol. 19, February 2005, pp. 573- 583. doi:10.1021/ef040045b
[44] A. Muto, T. Bhaskar, S. Tsuneishi and Y. Sakata, “Acti- vated Carbon Monoliths from Phenol Resin and Carbonized Cotton Fiber for Methane Storage,” Energy Fuels, Vol. 19, No. 1, January 2005, pp. 251-257. doi:10.1021/ef0400316
[45] L. Czepirski and J. JagieLLo, “Virial-Type Thermal Equation of Gas—Solid Adsorption,” Chemical Engineering Science, Vol. 44, No. 4, August 1989, pp. 797- 801. doi:10.1016/0009-2509(89)85253-4
[46] A. E. DeGance, “Multicomponent High-Pressure Adsorp- tion Equilibria on Carbon Substrates: Theory and Data,” Fluid Phase Equilibria, Vol. 78, October 1992, pp. 99- 137. doi:10.1016/0378-3812(92)87031-H
[47] J. C. Moreno-Piraján and L. Giraldo, “Setups for Simul- taneous Measurement of Isotherms and Adsorption Heats,” Review of Scientific Instruments, Vol. 76, No. 5, March 2005, pp. 1-8.
[48] S. Y. Zhang, O. Talu and D. T. Hayhurst, “High-Pressure Adsorption of Methane in NaX, MgX, CaX, SrX, and BaX,” The Journal of Physical Chemistry, Vol. 95, No. 4, February 1991, pp. 1722-1726. doi:10.1021/j100157a044
[49] M. S. Sun, D. B. Shah, H. H. Xu and O. Talu, “Adsorp- tion of Equilibria of C1-C4 Alkanes, CO2 and SF6 on Silicalite,” The Journal of Physical Chemistry, Vol. 102, No. 1, January 1998, pp. 1466-1473. doi:10.1021/jp9730196
[50] J. H. Yun, D. K. Choi and S. H. Kim, “Adsorption of Or- ganic Solvent Vapors on Hydrophobic Y-Type Zeolite,” American Institute of Chemical Engineers Journal, Vol. 44, No. 6, June 1998, pp. 1344-1350.
[51] W. G. Shim, J. W. Lee and H. Moon, “Adsorption of Car- bon Tetrachloride and Chloroform on Activated Carbon at (300.15, 310.15, 320.15 and 330.15) K,” Journal of Chemical & Engineering Data, Vol. 48, No. 2, January 2003, pp. 286-290. doi:10.1021/je020109h
[52] J. C. Moreno-Piraján, L. Giraldo, M. C. Baquero, N. Bri- ce?o and C. M. Díaz, “Influence of Temperature in the Processes of Carbonization and Activation with CO2 in the Obtainment of Activated Carbon from African Palm Pit. Study of the Modification of Characterization Parameters,” Internet Journal of Chemistry, Vol. 6, 2003, pp. 6-21.
[53] R. Montero-Lago, A. Vallone and K. Sapag, “Natural Gas Storage in Microporous Carbon Obtained from Waste of the Olive Oil Production,” Materials Research, Vol. 11, No. 4, December 2009, pp. 409-414.
[54] M. J. Prauchner and F. Rodriguez-Reinoso, “Preparation of Granular Activated Carbons for Adsorption of Natural gas,” Microporous and Mesoporous Materials, Vol. 109, No. 1-3, April 2008, pp. 581-584. doi:10.1016/j.micromeso.2007.04.046
[55] R. B. Rios, F. W. M. Silva, A. E. B. Torres, D. C. S. Azevedo and C. L. Cavalcante, “Adsorption of Methane in Activated Carbons Obtained from Coconut Shells Using H3PO4 Chemical Activation,” Adsorption, March 2009, Vol. 15, No. 3, pp. 271-277. doi:10.1007/s10450-009-9174-9
[56] T. A. Brady, T. A., M. Rostam-Abadi, and M. J. Rood, “Applications for Activated Carbons from Waste Tires: Natural Gas Storage and Air Pollution Control,” Gas Separation & Purification, September 1996, Vol. 10, No. 2, pp. 97-102. doi:10.1016/0950-4214(96)00007-2

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.