Electromechanical Properties of Ethylene Propylene Diene Elastomers: Effect of Ethylene Norbornene Content

Abstract

Ethylene propylene diene elastomers (EPDM) of various side chains and molecular weights were prepared as thin discs and the effects of electric field strength and temperature on the electromechanical properties were investigated. The electrical conductivity, the dielectric constant, the storage and loss moduli (G" and G'), the storage modulus response (ΔG1000 V/mm), and the storage modulus sensitivity (ΔG1000 V/mm/G0) of the elastomers of different ethylene norbornene (ENB) contents and molecular weights were measured under electric field strengths varying from 0 V/mm to 1000 V/mm and at temperatures between 300 K and 380 K. The storage modulus response and sensitivity increase with increasing molecular weight and dielectric constant, consistent with the existing theory. However, for the case of EPDMs with different ENB contents, the storage modulus response and sensitivity vary inversely with the dielectric constant. EDPM is potentially a new type of electroactive materials.

Share and Cite:

P. Intanoo, A. Sirivat, R. Kunanuruksapong and W. Lerdwijitjarud, "Electromechanical Properties of Ethylene Propylene Diene Elastomers: Effect of Ethylene Norbornene Content," Materials Sciences and Applications, Vol. 2 No. 5, 2011, pp. 307-313. doi: 10.4236/msa.2011.25040.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] C. Gerbo, “Future Materials,” Australian National University, Canberra, March 2004.
[2] J. S. Plante and S. Dubowsky, “On the Performance Mechanisms of Dielectric Elastomer Actuators,” Sensors and Actuators A: Physical, Vol. 137, No. 1, 2007, pp. 96-109. doi:10.1016/j.sna.2007.01.017
[3] C. R. Nave, “Department of Physics and Astronomy,” Georgia State University, Atlanta, 2005.
[4] J.-D. Nam, H.-R. Choi, J.-C. Koo, Y.-K. Lee and K.-J. Kim, “Dielectric Elastomers for Artificial Muscles,” In: K.-J. Kim and S. Tadokoro, Eds., Electro-active Polymers for Robotic Applications, Springer, Berlin, 2007, pp. 37-48. doi:10.1007/978-1-84628-372-7_2
[5] L. W. Liu, J. M. Fan, Z. Zhang, L. Shi, Y. J. Lin and J. S. Leng, “Analysis of the Novel Strain Responsive Actuators of Silicone Dielectric Elastomer,” Advanced Materials Research, Vol. 47-50, 2008, pp. 298-301. doi:10.4028/www.scientific.net/AMR.47-50.298
[6] J. Kyokane, H. Ishimoto, H. Yugen, T. Hirai, T. Ueda and K. Yoshino, “Electro-Striction Effect of Polyurethane Elastomer (PUE) and Its Application to Actuators,” Synthetic Metals, Vol. 103, No. 1-3, 1999, pp. 2366-2367. doi:10.1016/S0379-6779(98)00708-5
[7] K. Urayama, K. Kondo, Y. O. Arai and T. Takigawa, “Electrical Driven Deformations of Nematic Gels,” Physics Reviews E, Vol. 71, No. 5, 2005, p. 051713. doi:10.1103/PhysRevE.71.051713
[8] J. Feher, G. Filipcsei, J. Szalma and M. Zrinyi, “Bending Deformation of Neutral Polymer Gels Induced by Electric Fields,” Colloid and Surface A: Physicochemical and Engineering Aspects, Vol. 183-185, No. 15, 2001, pp. 505- 515.
[9] J. Li, L. Gao and J. K. Guo, “Mechanical Properties and Electrical Conductivity of TiN-Al2O3 Nanocomposites,” Journal of European Ceramic Society, Vol. 23, No. 1, 2003, pp. 69-74. doi:10.1016/S0955-2219(02)00089-4
[10] S. Yun, J. Kim and C. Song, “Performance of Electro- Active Paper Actuators with Thickness Variation,” Sensors and Actuators A: Physics, Vol. 133, No. 1, 2007, pp. 225-230.
[11] M. Bassil, J. Davena and M. Tahchi, “Electrochemical Properties and Actuation Mechanisms of Polyacrylamide Hydrogel for Artificial Muscle Application,” Sensors and Actuators B: Chemistry, Vol. 134, No. 2, 2008, pp. 496-501.
[12] M. Watanabe and T. Hirai, “Space Charge Distribution in Bending-Electrostrictive Polyurethane Films Doped with Salts,” Journal of Polymer Science Part B: Polymer Physics, Vol. 42, No. 3, 2004, pp. 523-531. doi:10.1002/polb.10728
[13] M. Wissler and E. Mazza, “Electromechanical Coupling in Dielectric Elastomer Actuators,” Sensors and Actuators A: Physics, Vol. 138, No. 2, 2007, pp. 384-393.
[14] P. Hiamtup, A. Sirivat and A. M. Jamieson, “Electromechanical Response of a Soft and Flexible Actuator Based on Polyaniline Particles Embedded in a Cross-Linked Poly (Dimethyl Siloxane) Network,” Materials Science and Engineering C, Vol. 28, No. 11, 2007, pp. 1044- 1051.
[15] R. Pelrine, R. Kornbluh, J. Joseph, R. Heydt, Q. Pei and S. Chiba, “High-Field Deformation of Elastomeric Dielectrics for Actuators,” Materials Science and Engineering C, Vol. 11, No. 2, 2000, pp. 89-100. doi:10.1016/S0928-4931(00)00128-4
[16] W. Wichiansee and A. Sirivat, “Electrorheological Properties of Poly(Dimethylsiloxane) and Poly(3,4-Ethylenedioxy Thiophene)/Poly(Stylene Sulfonic acid)/Ethylene Glycol Blends,” Materials Science and Engineering C, Vol. 29, No. 1, 2009, pp. 78-84. doi:10.1016/j.msec.2008.05.018
[17] D. O. Diaconu, F. Dorohoi and T. Topoliceanu, “Electro- striction of a Polyurethane Elastomer-Based Polyester,” IEEE Sensors Journal, Vol. 6, No. 4, 2006, pp. 876-880. doi:10.1109/JSEN.2006.877978
[18] M. Rubinstein and R. H. Colby, “Polymer Physics,” Oxford University Press, New York, 2003.
[19] R. Kunanuruksapong and A. Sirivat, “Electrical Properties and Electromechanical Responses of Acrylic Elastomers and Styrene Copolymers: Effect of Temperature,” Applied Physics A, Vol. 92, No. 2, 2008, pp. 313-320. doi:10.1007/s00339-008-4513-3
[20] T. Sato, H. Watanabe and K. Osaki, “Rheological and Dielectric Behavior of a Styrene-Isoprene-Styrene Triblock Copolymer in n-Tetradecane. 1. Rubbery-Plastic-Viscous Transition,” Macromolecules, Vol. 29, No. 19, 1996, pp. 6231-6239. doi:10.1021/ma960060i
[21] T. Puvanatvattana, D. Chotpattananont, P. Hiamtup, S. Niamlang, A. Sirivat and A. M. Jamieson, “Electric Field Induced Stress Moduli in Polythiophene/Polyisoprene Elastomer Blends,” Reactive and Functional Polymers, Vol. 66, No. 12, 2006, pp. 1575-1588. doi:10.1016/j.reactfunctpolym.2006.06.001
[22] J. W. Fox and N. C. Goulbourne, “On the Dynamic Electromechanical Loading of Dielectric Elastomer Membranes,” Journal of Mechanic and Physics of Solids, Vol. 56, No. 8, 2008, pp. 2669-2686. doi:10.1016/j.jmps.2008.03.007
[23] T. Shiga and T. Kurauchi, “Deformation of Polyelectrolyte Gels under Influence of Electric Field,” Journal of Applied Polymer Science, Vol. 39, 1990, pp. 2305-2330. doi:10.1002/app.1990.070391110
[24] L. Hao, Z. Shi and X. Zhao, “Mechanical Behavior of Starch/Silicone Oil/Silicone Rubber Hybrid Electric Elastomer,” Reactive and Functional Polymers, Vol. 69, No. 3, 2009, pp. 165-169. doi:10.1016/j.reactfunctpolym.2008.12.014

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.