Evaluation of 64Cu-DOTA- and 64Cu-CBTE2A-Galectin-3 Peptide as a PET Radiotracer for breast Carcinoma

Abstract

Galectin-3 (Gal-3) is a β-galactosidase binding protein that modulates various cellular processes including cell adhesion, and metastasis. We evaluated the tumor targeting and imaging properties of a galectin-3 binding peptide originally selected from bacteriophage display, in a mouse model of human breast carcinoma expressing galectin-3. A galectin-3 binding peptide, ANTPCGPYTHDCPVKR, was synthesized with a Gly-Ser-Gly (GSG) spacer and 1,4,7,10, tetraazacyclododecane-N,N’,N’’,N’’’-tetracetic acid (DOTA) or 4,11-bis(carboxymethyl)-1,4,8,11 tetrazabicyclo[6.6.2]hexadecane 4,11-diacetic acid (CB-TE2A), and radiolabeled with 64Cu. The synthesized peptides 64Cu-DO3A-(GSG)-ANTPCGPYTHDCPVKR (64Cu-DO3A- pep) and 64Cu-CB-TE2A-(GSG)-ANTPCGPYTHDCPVKR(64Cu-CB-TE2A-pep) demonstrated an IC50 value of 97 ± 6.7 nM and 130 ± 10.2 nM, respectively, to cultured MDA-MB-435 breast carcinoma cells in vitro in a competitive displacement binding study. The tumor tissue uptake in SCID mice bearing MDA-MB-435 tumors was 1.2 ± 0.18 %ID/g (64Cu-DO3A-pep) and 0.85 ± 0.0.9 %ID/g (64Cu-CB-TE2A-pep) at 30 min, respectively. While liver retention was moderate with both radiolabeled peptides the kidney retention was observed to be high. Radiation dose delivered to the tumor was estimated to be 42 mGy/mCi and 129 mGy/ mCi with CB-TE2A and DO3A peptides, respectively. Imaging studies demonstrated tumor uptake with both 64Cu-DO3A- and 64Cu-CB-TE2A-(GSG)-ANTPCGPYTHDCPVKR after 2 h post injection. These studies suggest that gal-3 binding peptide could be developed into a PET imaging agent for galectin-3-expressing breast tumors.

Share and Cite:

S. Kumar and S. Deutscher, "Evaluation of 64Cu-DOTA- and 64Cu-CBTE2A-Galectin-3 Peptide as a PET Radiotracer for breast Carcinoma," Advances in Molecular Imaging, Vol. 1 No. 1, 2011, pp. 1-11. doi: 10.4236/ami.2011.11001.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] S.H. Barondes, D.N. Cooper, M.A.Gitt and H.Leffler, “Galectins: Structure and function of a large family of animal lectins,” J Biol Chem, Vol. 269, No. 33, August 1994, pp.20807-20810.
[2] Sato S and R.C. Hughes, “Regulation of secretion and surface expression of Mac-2, a galactoside binding protein of macrophages,” J Biol Chem, Vol. 269, No. 6, February 1994, pp. 4424-4430.
[3] I.K. Moutsatsos, M. Wade, M. Schindler and J.L.Wang, “Endogenous lectins from cultured cells: nuclear locali-zation of carbohydrate binding protein 35 in proliferating 3T3 fibroblasts,” Proc Natl Acad Sci USA, Vol. 84, No. 18, September 1987, pp. 6452-6456.
[4] N.L.Perillo, M.E. Marcus and L.G. Baum, “Galectins: versatile modulators of cell adhesion, cell proliferation, and cell death,” J Mol Med, Vol. 76, No. 6, May 1998, pp. 402-412.
[5] S. Sato, I. Burdett and R.C. Hughes, “Secretion of the baby hamster kidney 30-kDA galactose binding lectin from polarized and nonpolarized cells: a pathway inde-pendent of the endoplasmic reticulum-Golgi complex,” Exp Cell Res, Vol 207, No. 1, July 1993, pp. 8-18.
[6] H. Inohara and A. Raz. “Functional evidence that cell surface galectin-3 mediate homotypic cell adhesion,” Cancer Res, Vol. 55, No.15, August 1995, pp.3267-3271.
[7] S.H.Barondes, D.N. Cooper, M.A.Gitt and H. Leffler. “Galectins. Structure and function of a large family of animal lectins.” J Biol Chem, Vol. 269, No. 33, August 1994, pp.20807-20810.
[8] H. Inohara, S. Akahani, S. Koths and A.Raz, “Interactions between galectin-3 andMac-2-binding protein mediate cell-cell adhesion.” Cancer Res, Vol 56, No. 19, October 1996. pp. 4530-4534.
[9] I. Wang, H. Inohara, K.J. Pienta and A. Raz. “Galectin-3 is a nuclear matrix protein which binds RNA,” Biochem Biophys Res Commun, Vol. 217, No. 1, December 1995, pp. 292-303.
[10] W.G. Stetler-Stevenson, S. Aznavoorian, L.A. Liotta, “Tumor cell interactions with the extracellular matrix during invasion and metastasis.” Ann Rev Cell Biol, Vol. 9, No.1993, pp. 541-573.
[11] L.A. Liotta, “Cancer cell invasion and metastasis,” Sci Americana, Vol. 266, No. 2, February 1992, pp. 54-63.
[12] V.V.Glinsky, G.V. Glinsky, K. Rittenhouse-Olson, M.E. Huflejt, O.V. Glinskii, and S.L. Deutscher and T.P. Quinn, “The role of Thomsen-Friedenreich antigen in adhesion of human breast and prostate cancer cells to the endothelium,” Cancer Res, Vol 61, No. 12, June 2001, 4851-4857.
[13] J.E.Lehr and K.J. Pienta, “Preferential adhesion of prostate cancer cells to a human bone marrow endothelial cell line,” J Natl Cancer Inst, Vol. 90, No. 2, January 1998, pp. 118-123.
[14] P. Nangia-Makker, V. Hogan, Y. Honjo, S. Baccarini, L. Tait, R. Bresalier R and Raz A, “Inhibition of human cancer cell growth and metastasis in nude mice by oral intake of modified citrus pectin,” J Natl Cancer Inst, Vol. 94, No. 24, December 2002, pp.1854-1862.
[15] G.V.Glinsky, J.E. Price, V.V.Glinsky, V.V.Mosine,G. Kiriakova and J.B.Metcalf, Inhibition of human breast cancer metastasis in nude mice by synthetic glycoamines, Cancer Res, Vol. 56, No. 23, December 1996, pp. 5319- 5324.
[16] V.V. Glinsky, G.V. Glinsky, O.V.Glinskii, V.H. Huxley, J.R. Turk, V.V. Mossin, S.L. Deutscher, K.J. Pienta and T.P.Quinn, “Intravascular metastatic cancer cell homotypic aggregation at the sites of primary attachment to the endothelium,” Cancer Res, Vol. 63, No. 13, July 2003, pp. 3805-3811.
[17] J. Zuo, V.V.Glinsky, L.A. Landon, L. Mathews and S.L.Deutscher, “Peptides specific to the galectin-3 car-bohydrate recognition domain inhibit metastasis-associated cancer cell adhesion,” Carcinogenesis, Vol. 26, No. 2, February 2005, pp. 309-318.
[18] S.R.Kumar and S.L.Deutscher, “111Inlabeled galectin-3 gtargeting peptide as a SPECT agent for imaging breast tumors,” J Nucl Med, Vol. 49, No. 5, May 2008, pp. 796- 803.
[19] D.J.Rowland, J.S.Lewis and M.J.Welch, “Molecular Im-aging: the application of small animal positron emission tomography,” J Cell Biochem, Supp 39, October 2002, pp. 110-115.
[20] P. McQuade, Y. Miao, J. Yoo, T.P. Quinn, M.J. Welch and J.S. Lewis, “Imaging of melanoma using 64Cu- and 86Y-DOTA-ReCCMSH(Arg11), a cyclized peptide ana-logue of alpha-MSH,” J Med Chem, Vol. 48, No. 8, April 2005, pp.82985-2992.
[21] Y.Wu, X. Zhang, Z. Xiong, Z. Cheng, D.R. Fisher, S. Liu, SS. Gambhir and X. Chen, “microPET imaging of glioma integrin{alpha}v{beta}3 expression using (64)Cu-labeled tetrameric RGD peptide.” J Nucl Med, Vol. 46, No. 10, October 2005, pp.1707-1718.
[22] C.A.Boswell, C.A.Regino, K.E. Baidoo, K.J. Wong, A. Bumb, H. Xu, D.E.Milenic, J.A.Kelley, C.C.Lai, M.W.Brechbiel. “Synt-hesis of a cross-bridged cyclam derivative for peptide conjugation and 64Cu radiolabling,” Bioconjug Chem, Vol. 19, No. 7, July 2008, pp. 1476- 1484.
[23] J.E. Sprague, Y. Peng, X. Sun, G.R.Weisman, E.H. Wong, S. Achilefu and C.J. Anderson,“ Preparation and biologi-cal evaluation of copper-64-labeled tyr3-octreotate using a cross-bridged macrocyclic chelator,” Clin Cancer Res, Vol. 10, No. 24, December 2004, pp.8674-8682.
[24] E. Vegt, J.E. van Eerd, A. Eek, W.J. Oyen, J.F. Wetzels, M. de Jong, F.G. Russel, R. Masereeuw, M. Gotthardt, and O.C. Boerman, “Reducing renal uptake of radiolabeled peptides using albumin fragments,” J Nucl Med, Vol. 49, No. 9, September 2008, pp.1506-1511(2008).
[25] T.E. Hui, D.R. Fisher, J.A. Kuhn, L.E. Williams, C. Nou-rigat, C.C. Badger, B.G. Beatty, J.D. Beatty. A mouse model for calculating cross-organ beta doses from yt-trium-90-labeled immunoconjugates. Cancer. 1994; 73 (suppl): 951-957.
[26] W.H. Miller, C. Hartmann-Siantar, M. A. Descalle, J. Lehmann, M. R. Lewis, T. Hoffman, J. Smith, P. Situ and W. A. Volkert, “Mouse Organ Absorbed Dose Fractions for Beta Emitters,” Trans. Am. Nucl. Soc., 89, 689-692 (November 16-20, 2003).
[27] S.R.Kumar, F.A.Gallazi. R.Ferdani, C.J.Anderson, T.P.Quinn and S.L.Deutscher, “In vitro and In vivo eval-uation of 64Cu radiolabeled KCCYSL peptides for target-ing epidermal growth factor receptor-2 in breast carcino-mas,” Cancer Biother Radiopharm, Vol. 25, No. 6, De-cember 2010, pp.6693-703.
[28] J.E. Price, A. Polyzos, R.D. Zhang and L.M. Daniels, “Tumorigenicity and metastasis of human breast carcinoma cell lines in nude mice,” Cancer Res, Vol 50, No. 3, February 1990, pp. 717-721.
[29] J.M. Rae, S.J. Ramus, M. Waltham, J.E. Armes, I.G. Campbell, R. Clarke R, R.J. Barndt, M.D. Johnson, E.W. Thompson, “Common origins of MDA-MB-435 cells from various sources with those shown to have melanoma properties,” Clin Exp Metastasis, Vol. 21, No.6, Septem-ber 2004, pp. 543-552.
[30] A.F.Chambers, “MDA-MB-435 and M14 cell lines: iden-tical but not M14 melanoma?,” Cancer Res, Vol. 69, No. 13. July 2009, pp. 5292-5293.
[31] C.A.Boswell, X. Sun, W. Niu, G.R. Weisman, E.H.Wong, A.L.Rheingold and C.J. Anderson, “Comparative in vivo stability of copper-64-labeled cross-bridged and conven-tional tetraazamacrocyclic complexes,” J Med Chem, Vol. 247, No. 6, March 2004, pp.1465-1474 (2004).
[32] L.A. Bass, M. Wang, M.J.Welch and C.J.Anderson,“In vivo transchelation of copper-64 from TETA-octreotide to superoxide dismutase in rat liver,” Bioconjug Chem. Vol. 1, No. 4, July 2000, pp.527-532.
[33] M Yu, H. Qing, H. Guojian Shu Z, W. Wenqing, H. Youfeng and J.T. Kuikka, “Bio-distribution of [64Cu] Cu2+ and variance of metallothionein during tumor treatment by copper,”Nuc Med Biol, Vol. 25, No. 2, February 1998, pp. 111-116.
[34] D. Ma, F. Lu, T. Overstreet, D.E. Milenic and M.W.Brechbiel, “Novel chelating agents for potential clinical applications of copper,” Nucl Med Biol, Vol. 29, No. 1, January 2002, pp.91-105.
[35] H.Akizawa, Y. Arano, T. Uezono, M. Ono, Y. Fujioka, T.Uehara, A, Yokoyama, K. Akaji, Y. Kiso, M. Koizumi and H. Saji, “Renal metabolism of 111In-DTPA-D-Phe1- octreotide in vivo,” Bioconjug Chem. Vol. 9, No. 6, No-vember 1998, pp. 662-670.
[36] T.M.Jones-Wilson, K.A.Deal, C.J. Anderson D.W. McCarthy, Z. Kovacs, R.J. Motekaitis, A.D. Sherry, A.E. Martell and M.J. Welch, “The in vivo behavior of per-64-labeled azamacrocyclic complexes,” Nucl Med Biol, Vol. 25, No. 6, August 1998, pp. 523-530.
[37] H.Akizawa, Y.Arano, M. Mifune, A. Iwado, Y. Saito, T. Mukai, “Effect of molecular charges on renal uptake of 111In-DTPA-conjugated peptides,” Nucl Med Biol, Vol 28, No. 7, October 2001, pp. 761-768.
[38] B.F.Bernard , E.P. Krenning, W.A. Breeman, E.J. Rolle-man, W.H. Bakker, T.J. Visser, H. M?cke and M. de Jong, “D-lysine reduction of indium-111 octreotide and yt-trium-90octreotide renal uptake,” J Nucl Med, Vol. 38, No. 12, December 1997, pp.1929-1933.
[39] E. Vegt, J.F.Wetzels, F.G. Russel, R. Masereeuw, O.C. Boerman, J.E. van Eerd, F.H. Corstens and W.J.Oyen, “Renal uptake of radiolabeled octreotide in human subjects is efficiently inhibited by succinylated gelatin,” J Nucl Med, Vol. 47, No. 3, March 2006, pp. 432-436.
[40] J.C. Garrison, T.L. Rold, G.L. Sieckman, F. Naz, S.V. Sublett, S.D. Figueroa, W.A. Volkert and T.J. Hoffman, “Evaluation of the pharmacokinetic effects of various linking group using the 111In-DOTA-X-BBN(7-14)NH2 structural paradigm in a prostate cancer model,” Bioconjug Chem, Vol. 19, No. 9, September 2008, pp. 1803- 1812.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.