Share This Article:

Why E Is Not Equal to mc2

Abstract Full-Text HTML Download Download as PDF (Size:1027KB) PP. 743-750
DOI: 10.4236/jmp.2014.59084    6,747 Downloads   9,900 Views   Citations

ABSTRACT

We show that Einstein’s famous formula E = mc2 is actually the sum of two quantum parts, namely E = mc2/22 of the quantum particle and E = mc2 (21/22) of the quantum wave. We use first Magueijo-Smolin’s VSL theory to derive the relevant equation and then validate our results using ’tHooft-Veltman’s dimensional regularization. All in all our result confirms the COBE, WMAP, Planck and super nova cosmic measurements with astonishing precision.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Naschie, M. (2014) Why E Is Not Equal to mc2. Journal of Modern Physics, 5, 743-750. doi: 10.4236/jmp.2014.59084.

References

[1] Cox, B. and Forshaw, J. (2010) Why Does E = mc2? Da Capop Press-Perseus Books Group, Philadelphia.
[2] Helal, M.A., Marek-Crnjac, L. and He, J.-H. (2013) Open Journal of Microphysics, 3, 141-145.
http://dx.doi.org/10.4236/ojm.2013.34020
[3] Marek-Crnjac, L. (2013) International Journal of Astronomy and Astrophysics, 3, 464-471.
http://dx.doi.org/10.4236/ijaa.2013.34053
[4] El Naschie, M.S. (2013) Journal of Modern Physics, 4, 591-596.
http://dx.doi.org/10.4236/jmp.2013.45084
[5] El Naschie, M.S. (2013) Journal of Quantum Information Science, 3, 121-126.
http://dx.doi.org/10.4236/jqis.2013.34016
[6] Penrose, R. (2004) The Road to Reality. Jonathan Cape, London.
[7] El Naschie, M.S., Rossler, O.E. and Prigogine, I. (1995) Quantum Mechanics, Diffusion and Chaotic Fractals. Pergamon Press/Elsevier, Oxford.
[8] Chirardi, G. (2005) Sneaking a Look at God’s Cards. Princeton University Press, Princeton.
[9] Penrose, R. (1994) Shadows of the Mind. Oxford University Press, Oxford.
[10] El Naschie, M.S. (2012) Revising Einstein’s E = mc2: A Theoretical Resolution of the Mystery of Dark Energy. The Fourth Arab International Conference in Physics and Materials Science, Alexandria, 1-3 October 2012.
[11] He, J.-H. (2012) A Historical Scientific Announcement on Dark Energy.
http://works.bepress.com/ji-huan_he/64.mini-symposium
[12] He, J.-H. (2013) Fractal Space-Time & Non-Commutative Geometry in Quantum & High Energy Physics, 3, 1-2.
[13] He, J.-H. and Marek-Crnjac, L. (2013) Fractal Space-Time & Non-Commutative Geometry in Quantum & High Energy Physics, 3, 130-137.
[14] He, J.-H. and El Naschie, M.S. (2013) Fractal Space-Time and Non-Commutative Geometry in High Energy Physics, 3, 59-62.
[15] El Naschie, M.S. (2013) International Journal of Astronomy and Astrophysics, 3, 483-493.
http://dx.doi.org/10.4236/ijaa.2013.34056
[16] El Naschie, M.S. (2013) American Journal of Modern Physics, 2, 357-361.
http://dx.doi.org/10.11648/j.ajmp.20130206.23
[17] Longair, M. (2006) The Cosmic Century: “A History of Astrophyiscs and Cosmology”. Cambridge University Press, Cambridge.
[18] Ruiz-Lapuente, P. (2010) Dark Energy: Observational and Theoretical Approaches. Cambridge University Press, Cambridge.
[19] Bahcall, J., Piran, T. and Weinberg, S. (2004) Dark Matter in the Universe. World Scientific, Singapore.
[20] Amendola, L. and Tsujikawa, S. (2010) Dark Energy. Cambridge University Press, Cambridge.
http://dx.doi.org/10.1017/CBO9780511750823
[21] Mortonson, M.J., Weinberg, D.H. and White, M. (2013) Dark Energy. arXiv:1401.0046V1[astro-ph co]
[22] Dingle, H. (1972) Science at the Crossroads. Martin Brian and O’Keefe, London.
[23] Ohanian, H.C. (2009) Studies in History and Philosophy of Science Part B, 40, 167-173.
http://dx.doi.org/10.1016/j.shpsb.2009.03.002
[24] Mc-Crea, W.H. (1967) Nature, 216, 122-124.
http://dx.doi.org/10.1038/216122a0
[25] Overbye, D. (2002) Roll over Einstein. New York Times, 31 December 2002, 2.
[26] Dingle, H. (1973) Nature, 244, 567-568.
http://dx.doi.org/10.1038/244567a0
[27] El Naschie, M.S. (1990) Stress, Stability and Chaos in Structural Engineering: An Energy Approach. McGraw Hill, London, Tokyo.
[28] Heisenberg, W. (1969) Der Teil und das Ganze. R. Piper Verlag, München. (English Edition (1971) Physics and Beyond. Harper and Row, New York.)
[29] El Naschie, M.S. (1994) Chaos, Solitons & Fractals, 4, 1141-1145.
http://dx.doi.org/10.1016/0960-0779(94)90027-2
[30] El Naschie, M.S. (2005) Chaos, Solitons & Fractals, 24, 941-946.
http://dx.doi.org/10.1016/j.chaos.2004.10.001
[31] Dyson, F. (1988) Infinite in all Directions. Harper & Row, New York.
[32] El Naschie, M.S. (2013) International Journal of Modern Nonlinear Theory and Application, 2, 43-54.
http://dx.doi.org/10.4236/ijmnta.2013.21005
[33] Magueijo, J. (2003) Faster than the Speed of Light. Arrow Books, the Random House, London.
[34] Mageuijo, J. and Smolin, L. (2001) Lorentz Invariance with an Invariant Energy Scale. arXiv:hep-th/0112090V2
[35] El Naschie, M.S. (2013) Journal of Quantum Information Science, 3, 57-77.
http://dx.doi.org/10.4236/jqis.2013.32011
[36] Marek-Crnjac, L., El Naschie, M.S. and He, J.H. (2013) International Journal of Modern Nonlinear Theory and Application, 2, 78-88.
http://dx.doi.org/10.4236/ijmnta.2013.21A010
[37] Wapner, L.M. (2005) The Pea and the Sun. A.K. Peters Ltd., Wellesley.
[38] ’tHooft, G. (2001) A Confrontation with Infinity. In: Sidharth, B. and Altaisky, M., Eds., Frontiers of Fundamental Physics 4, Kluwer-Plenum, New York, 1-12.
[39] El Naschie, M.S. (2001) ‘tHooft Dimensional Regularization Implies Transfinite Heterotic String Theory and Dimensional Transmutation. In: Sidharth, B. and Altaisky, M., Eds., Frontiers of Fundamental Physics 4, Kluwer-Plenum, New York, 81-86.
http://dx.doi.org/10.1007/978-1-4615-1339-1_7
[40] Kaku, M. (1999) Introduction to Superstrings and M-Theory. Springer, New York.
http://dx.doi.org/10.1007/978-1-4612-0543-2
[41] Mason, P. (2010) Quantum Glory. XP Publishing, Arizona.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.