Share This Article:

Application of the Two Nonzero Component Lemma in Resource Allocation

Abstract Full-Text HTML XML Download Download as PDF (Size:922KB) PP. 653-661
DOI: 10.4236/jamp.2014.27072    2,235 Downloads   2,809 Views   Citations


In this paper we will generalize the author's two nonzero component lemma to general self-reducing functions and utilize it to find closed from answers for some resource allocation problems.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Seddighin, M. (2014) Application of the Two Nonzero Component Lemma in Resource Allocation. Journal of Applied Mathematics and Physics, 2, 653-661. doi: 10.4236/jamp.2014.27072.


[1] Gustafson, K. and Rao, D. (1997) Numerical Range. Springer, New York.
[2] Gustafson, K. and Seddighin, M. (1989) Antieigenvalue Bounds. Journal of Mathematical Analysis and Applications, 143, 327-340.
[3] Seddighin, M. (2002) Antieigenvalues and Total Antieigenvalues of Normal Operators. Journal of Mathematical Analysis and Applications, 274, 239-254.
[4] Seddighin, M. (2009) Antieigenvalue Techniques in Statistics. Linear Algebra and Its Applications, 430, 2566-2580.
[5] Seddighin, M. and Gustafson, K. (2005) On the Eigenvalues which Express Antieigenvalues. International Journal of Mathematics and Mathematical Sciences, 2005, 1543-1554.
[6] Ibaraki, T. and Katoh, N. (1988) Resource Allocation Problems. The MIT Press, Cambridge.
[7] Cameron, R. and Kouvartakis, B. (1980) Minimizing the Norm of Output Feedback Controllers Used in Pole Placement: A Dyadic Approach. International Journal of Control, 32, 759-770.

comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.