Share This Article:

Magnetic-Field-Induced Phase Transition and a Possible Quantum Hall Effect in the Quasi-One-Dimensional CDW Organic Conductor HMTSF-TCNQ

Abstract Full-Text HTML Download Download as PDF (Size:1543KB) PP. 673-679
DOI: 10.4236/jmp.2014.58078    3,210 Downloads   4,040 Views   Citations

ABSTRACT

In the Temperature-Pressure phase diagram, the quasi-one-dimensional conductor, HMTSF-TCNQ, the ground state at ambient pressure is an insulator of charge density wave (CDW) below 30 K, while it shows a good metallic nature at higher temperature. The CDW insulating state is suppressed by a pressure of 1 GPa, which is considered to be a quantum critical point. Neither at 0 - 0.5 nor 2 GPa but only around this critical point in pressure, field-induced phases appear from 0.2 T through 10 T, where Rxy is almost constant and Rxx is very low. These phenomena are achieved when the magnetic field is applied along the least conducting axis. The behaviors are consistent with a kind of Quantum Hall Effect (QHE). The field-induce phase accompanied by the QHE might be the field-induced CDW (FICDW) similar to that of FISDW, observed in (TMTSF)2X salts. This paper presents the latest result of the Hall effects reviewing the history of the authors’ work on this material from preliminary to the latest ones.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Murata, K. , Fukumoto, Y. , Yokogawa, K. , Kang, W. , Takaoka, R. , Tada, R. , Hirayama, H. , Brooks, J. , Graf, D. , Yoshino, H. , Sasaki, T. and Kato, R. (2014) Magnetic-Field-Induced Phase Transition and a Possible Quantum Hall Effect in the Quasi-One-Dimensional CDW Organic Conductor HMTSF-TCNQ. Journal of Modern Physics, 5, 673-679. doi: 10.4236/jmp.2014.58078.

References

[1] Jerome, D., Mazaud, A., Ribault, M. and Bechgaard, K. (1980) Journal de Physique Lettres (Paris), 41, 95-98.
http://dx.doi.org/10.1051/jphyslet:0198000410409500
[2] Chaikin, P. (1996) Journal de Physique I, 6, 1875-1898.
http://dx.doi.org/10.1051/jp1:1996169
[3] Phillips, T.E., Kistenmacher, T.J., Bloch, A.N. and Cowan, D.C. (1976) Journal of the Chemical Society, 66, 334-335.
[4] Bloch, A.N., Cowan, D.O., Bechgaard, K., Pyle, R.E., Banks, R.H. and Poehler, T.O. (1975) Physical Review, 34, 1561-1564.
[5] Weyl, C., Engler, E.M., Bechgaard, K., Jehanno, D. and Etemad, S. (1976) Solid State Communications, 19, 925-930.
http://dx.doi.org/10.1016/0038-1098(76)90688-8
[6] Jerome, D. and Schulz, H.J. (2002) Advances in Physics, 51, 293-479.
http://dx.doi.org/10.1080/00018730110116362
[7] Yasuzuka, S., Murata, K., Yasuzuka, S., Arimoto, T. and Kato, R. (2007) Journal of the Physical Society of Japan, 76, Article ID: 033701.
http://dx.doi.org/10.1143/JPSJ.76.033701
[8] Murata, K., Yokogawa, K., Brooks, J.S., Kismarahardja, A., Steven, E., Kano, M., Seno, Y., Tamilselvan, N.R., Yoshino, H., Sasaki, T., Jerome, D., Senzier, P., Bechgaard, K., Uruichi, M. and Yakushi, K., (2010) Journal of Physics: Conference Series, 215, Article ID: 012064.
http://dx.doi.org/10.1088/1742-6596/215/1/012064
[9] Murata, K., Yokogawa, K., Brooks, J.S., Kismarahardja, A., Steven, E., Kano, M., Seno, Y., Tamilselvan, N.R., Yoshino, H., Sasaki, T., Jerome, D., Senzier, P., Bechgaard, K., Uruichi, M. and Yakushi, K. (2010) Physica B, 405, S111-S112.
http://dx.doi.org/10.1016/j.physb.2010.02.012
[10] Murata, K., Yokogawa, K., Kobayashi, K., Masuda, K., Sasaki, T., Seno, Y., Tamilselvan, N.R., Yoshino, H., Brooks, J.S., Jerome, D., Bechgaard, K., Uruichi, M., Yakushi, K., Nogami, Y. and Kato, R. (2010) Journal of the Physical Society of Japan, 79, Article ID: 103702.
http://dx.doi.org/10.1143/JPSJ.79.103702
[11] Murata, K., Kang, W., Masuda, K., Kuse, T., Sasaki, T., Yokogawa, K., Yoshino, H., Brooks, J.S., Choi, E.S., Kiswandhi, A. and Kato, R. (2012) Physica B, 407, 1927-1929.
[12] Murata, K., Kang, W., Masuda, K., Fukumoto, Y., Graf, D., Kiswandhi, A., Choi, E.S., Brooks, J.S., Sasaki, T., Yokogawa, K., Yoshino, H. and Kato, R. (2013) Journal of Low Temperature Physics, 170, 377-382.
http://dx.doi.org/10.1007/s10909-012-0799-9
[13] Kartsovnik, M. and Laukhin, V.N. (1996) Journal de Physique I (France), 6, 1753-1786.
http://dx.doi.org/10.1051/jp1:1996187
[14] Lebed, A.G. (2009) Physical Review Letters, 103, Article ID: 046401.
http://dx.doi.org/10.1103/PhysRevLett.103.046401
[15] Murata, K., Fukumoto, Y., Yokogawa, K., Takaoka, R., Kang, W., Brooks, J.S., Graf, D., Yoshino, H., Sasaki, T. and Kato, R. (2014) Fizika Nizkikh Temperatur (New Achievement of Fermiology, a Memorial Issue for the 60th Year Anniversary of Lifschitz-Kosevich Theory), 40, 477-483.
http://fnte.ilt.kharkov.ua/main.php?page=3
Low Temperature Physics, 40, 371-376.
http://dx.doi.org/10.1063/1.4869591
[16] Kajimura, K., Ukahci, H., Tokumoto, M., Murata, K., Ukachi, T., Anzai, H., Ishiguro, T. and Saito, G. (1983) Journal de Physique Archives, 44-C3, 1059-1062.
[17] Takahashi, T., Maniwa, Y., Kawamura, H. and Saito, G. (1986) Journal of the Physical Society of Japan, 55, 1364-1373.
http://dx.doi.org/10.1143/JPSJ.55.1364

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.