Incorporation of Carboplatin in Microporous Granular Calcium Phosphate Biphasic Matrix

Abstract

The HA/β-TCP biphasic bioceramics stand out on researches in different areas of biomedical applications. These bioceramics with microporous microstructures also stand out in biomedical applications on controlled drug release. This study aimed at the synthesis of the biphasic HA/β-TCP powder, and at the elaboration and characterization of the microporous biphasic HA/β-TCP granular biomaterial. The microporous granular material was elaborated through the process of ceramic powder sieving (200 μm < d < 500 μm mesh sizes). The granular material was sintered at 1100°C/2 h, providing the microporous biphasic granular biomaterial. The drug loading in the biomaterial was performed through the high vacuum method. The results here presented are related to the synthesis method and elaboration of the biphasic biomaterial. The results obtained from the drug loading through the high vacuum method conducted the incorporation of the drug onto the surface and into the microporous granular biomaterial.

Share and Cite:

Copatti, C. , Camargo, N. and Gemelli, E. (2014) Incorporation of Carboplatin in Microporous Granular Calcium Phosphate Biphasic Matrix. Journal of Biosciences and Medicines, 2, 30-35. doi: 10.4236/jbm.2014.22005.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Victor, S.P. and Sampath Kumar, T.S. (2008) BCP Ceramic Microspheres as Drug Delivery Carriers: Synthesis, Characterisation and Doxycycline Release. Journal of Materials Science: Materials in Medicine, 19, 283-290. http://dx.doi.org/10.1007/s10856-006-0044-7
[2] Camargo, N.H.A., et al. (2009) Synthesis and Characterization of Nanostructured Ceramic Powders of Calcium Phosphate and Hydroxyapatite for Dental Applications. Key Engineering Materials, 398, 619-622.
[3] Ramay, H.R.R. and Zhang, M. (2004) Biphasic Calcium Phosphate Nanocomposite Porous Scaffolds for Load-Bearing Bone Tissue Engineering. Biomaterials, 25, 5171-5180 http://dx.doi.org/10.1016/j.biomaterials.2003.12.023
[4] Ghanaati, S., Barbeck, M., Orth, C., Willershausen, I., Thimm, B.W., et al. (2010) Influence of β-Tricalcium Phosphate Granule Size and Morphology on Tissue Reaction in Vivo. Acta Biomaterialia, 6, 4476-4487.
[5] Dorozhkin, S.V. (2012) Biphasic, Triphasic and Multiphasic Calcium Orthophosphates. Acta Biomaterialia, 8, 963-977. http://dx.doi.org/10.1016/j.actbio.2011.09.003.
[6] Ghanaati, S., Barbeck, M., Orth, C. andWillershausen, I., et al. (2010) Influence of β-Tricalcium Phosphate Granule Size and Morphology on Tissuereaction in Vivo. Acta Biomaterialia, 6, 4476-4487. http://dx.doi.org/10.1016/j.actbio.2010.07.006.
[7] Ginebra, M.P., Canal, C., Espanol, M., Pastorino, D. and E.B. Montufar, (2012) Calcium Phosphate Cements as Drug Delivery Materials. Advanced Drug Delivery Reviews, 64, 1090-1110 http://dx.doi.org/10.1016/j.addr.2012.01.008
[8] Ginebra, M.P., Traykova, T. and Planell, J.A. (2006) Calcium Phosphate Cements as Bone Drug Delivery Systems: A Review. Journal of Controlled Release, 113, 102-110. http://dx.doi.org/10.1016/j.jconrel.2006.04.007
[9] Arar, H.H. and Bajpai, P.K. (1992) Insulin Delivery by Zinc Calcium Phosphate Ceramics. Biomedical Sciences Instrumentation, 28, 173-178.
[10] Velard, F. Braux, J. and Amedee, J. (2013) Patrice Laquerriere Inflammatory Cell Response to Calcium Phosphate Biomaterial Particles: An Overview. Acta Biomaterialia, 9, 4956-4963. http://dx.doi.org/10.1016/j.actbio.2012.09.035
[11] Copatti, C., Daiara F.S, Correa, P. and Camargo, N.H.A. (2012) Elaboração e caracterização de biomaterial nano-estruturado granulado bifásico ha/tcp-b para aplicaçães no tratamento da estrutura óssea. http://www.cbecimat.com.br/trabalhos-completos-cbecimat.php.
[12] Josse, S., Faucheux, C., Soueidan, A., et al. (2005) Novel Biomaterials for Bisphosphonate Delivery. Biomaterials, 26, 2073-2080.
[13] Busse, B., Jobke, B., Hahn, M., Priemel, M., Niecke, M., Seitz, S., Zustin, J., Semler, J. and Amling, M. (2010) Effects of Strontium Ranelate Administration on Bisphosphonate-Altered Hydroxyapatite: Matrix Incorporation of Strontium Is Accompanied by Changes in Mineralization and Microstructure. Acta Biomaterialia, 6, 4513-4521. http://dx.doi.org/10.1016/j.actbio.2010.07.019
[14] Camargo, N.H.A., de Lima, S. A. and Gemelli, E. (2012) Synthesis and Characterization of Hydroxyapatite/TiO2n Nanocomposites for Bone Tissue Regeneration. American Journal of Biomedical Engineering, 2, 41-47,
[15] Luís Fernando Pereira: Elaboração e Caracterização de Biomateriais Nanocompósitos Granulados: universidade do estado de santa catarina, udesc centro de ciências tecnológicas, cct curso de engenharia mecanica: trabalho de conclus o de curso.
[16] Ginebra, M.P., Espanol, M., Montufar, E.B., Perez, R.A. and Mestres G. (2010) New Processing Approaches in Calcium Phosphate Cements and Their Applications in Regenerative Medicine. Acta Biomaterialia, 6, 2863-2873. http://dx.doi.org/10.1016/j.actbio.2010.01.036
[17] Kojima, C., Suehiro, T., Watanabe, K., Ogawa, M., Fukuhara, A., Nishisaka, E., Harada, A., Kono, K., Inui, T. and Magata, Y. (2013) Doxorubicin-Conjugated Dendrimer/Collagen Hybrid Gels for Metastasis-Associated Drug Delivery Systems. Acta Biomaterialia, 9, 5673-5680. http://dx.doi.org/10.1016/j.actbio.2012.11.013
[18] D’Este, M. and Eglin, D. (2013) Hydrogels in Calcium Phosphate Moldable and Injectable Boné Substitutes: Sticky Excipients or Advanced 3-D Carriers? Acta Biomaterialia, 9, 5421-5430. http://dx.doi.org/10.1016/j.actbio.2012.11.022
[19] Mahkam, M., Hosseinzadeh, F. and Galehassadi, M. (2012) Prep-aration of Ionic Liquid Functionalized Silica Nanoparticles for Oral Drug Delvery. Jornal of Biomaterials and Nanobi-otechenology, 3, 391-395
[20] Mahkam, M., Hosseinzadeh, F. and Galehassadi, M. (2012) Preparation of Ionic Liquid Functionalized Silica Nanoparticles for Oral Drug Delvery. Journal of Biomaterials and Nanobiotechenology, 3, 391-395. http://dx.doi.org/10.1016/j.ijpharm.2009.10.018
[21] Mora-Huertas, C.E., Fessi, H. and Elaissari, A. (2010) Polymer-Based Nanocapsules for Drug Delivery. International Journal of Pharmaceutics, 385, 113-142. http://dx.doi.org/10.1016/j.ijpharm.2009.10.018
[22] Bianco, A., Kostarelos, K. and Prato, M. (2005) Applications of Carbon Nanotubes in Drug Delivery. Current Opinion in Chemical Biology, 9, 674-679.
[23] Wamocha, H.L., Misak, H.E., Song, Z., Chu, H.Y., Chen, Y.Y., Asmatulu, R., Yang, S.-Y. and Ho, J.C. (2013) Cytotoxicity of Release Products from Magnetic Nanocomposites in Targeted Drug Delivery. Journal of Biomaterials Applications, 27, 661.
[24] Friend, D.R. (1991) Colon-Specific Drug Delivery. Advanced Drug Delivery Reviews, 7, 149-199.
[25] Dalmônico, G.M.L. (2011) Síntese e caracterização de fosfato de cálcio e de hidroxiapatita: Elaboração de composiçães bifásicas HA/TCP-para aplicaçães biomédicas. Dissertação de mestrado em Ciência e Engenharia de Materiais, Universidade do Estado de Santa Catarina, Joinville-SC, 95.
[26] De Lima, S., Souza, J., Camargo, N., Pupio, F., Santos, R. and Gemelli, E. (2008) Síntese e Caracterização de Pós Nanoestruturados de Hidroxiapatita. 5 Congresso Latino Americano de 2008órgãos Artificiais e Biomateriais, COLAOB’ 2008, Ouro Preto, 1-6.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.