Bandwidth Enhancement and Size Reduction of Microstrip Patch Antenna by Magnetoinductive Waveguide Loading
Jayant G. Joshi, Shyam S. Pattnaik, Swapna Devi, Mohan R. Lohokare
.
DOI: 10.4236/wet.2011.22006   PDF    HTML   XML   9,405 Downloads   20,864 Views   Citations

Abstract

A planar magnetoinductive (MI) waveguide loaded rectangular microstrip patch antenna is presented and discussed. The MI waveguide consists of two planar metamaterial split squared ring resonators (SSRRs) placed in between two microstrip lines. The backward wave propagation takes place through this structure. The rectangular microstrip patch antenna is magnetically coupled to the MI waveguide. The unloaded rectangular microstrip patch antenna resonates at 37.10 GHz. When loaded with planar MI waveguide, its resonant frequency is reduced to 9.38 GHz with the bandwidth and gain of 44% and 4.16 dBi respectively. In loaded condition, the dimension of antenna is 12.50 mm × 3.70 mm (0.390 λ × 0.115 λ). The appreciable bandwidth is achieved in such a small size antenna. The pass band frequency of MI waveguide is predicted by using the theoretical model of dispersion equation. The effective medium theory is used to verify the metamaterial characteristics of SSRR. The simulated results and theoretical calculations are also presented. The results show that the proposed method can be used to design compact and high bandwidth microstrip patch antennas.

Share and Cite:

J. Joshi, S. Pattnaik, S. Devi and M. Lohokare, "Bandwidth Enhancement and Size Reduction of Microstrip Patch Antenna by Magnetoinductive Waveguide Loading," Wireless Engineering and Technology, Vol. 2 No. 2, 2011, pp. 37-44. doi: 10.4236/wet.2011.22006.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] V. G. Veselago, “The Electrodynamics of Substances with Simultaneously Negative Values of ε and μ,” Soviet Physics Uspekhi, Vol. 10, No. 4, January-February 1968, pp. 509-514. doi:10.1070/PU1968v010n04ABEH003699
[2] J. B. Pendry, A. J. Holden, D. J. Robbins and W. J. Stewart, “Magnetism from Conductors and Enhanced Nonlinear Phenomena,” IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 1999, pp. 2075- 2084. doi:10.1109/22.798002
[3] R. A. Shelby, D. R. Smith and S. Schults, “Experimental Verification of a Negative Index of Refraction,” Science, Vol. 292, No. 5514, 2001, pp. 77-79. doi:10.1126/science.1058847
[4] D. R. Smith, D. C. Vier, T. Koschny and C. M. Soukoulis, “Electromagnetic Parameter Retrieval from Inhomogeneous Metamaterials,” Physical Review E, Vol. 71, 2005, pp. (036617)1-10.
[5] R. W. Ziolkowski, “Design, Fabrication, and Testing of Double Negative Metamaterials,” IEEE Transactions on Antennas and Propagation, Vol. 51, No. 7, 2003, pp. 1516-1529. doi:10.1109/TAP.2003.813622
[6] J. G. Joshi, S. S. Pattnaik, S. Devi and M. R. Lohokare, “Electrically Small Patch Antenna Loaded with Metamaterial,” IETE Journal of Research, Vol. 56, No. 6, 2010, pp. 373-379.
[7] J. G. Joshi, S. S. Pattnaik, S. Devi and M. R. Lohokare, “Microstrip Patch Antenna Loaded with Magnetoinductive Waveguide,” Proceedings of 12th National Symposium on Antennas and Propagation, Cochin, 6-10 December 2010, pp. 101-105.
[8] I. V. Shadrivov, A. N. Reznik and Y. S. Kivshar, “Magnetoinductive Waves in Arrays of Split-Ring Resonators,” Physica B, Vol. 394, No. 2, 2007, pp. 180-183. doi:10.1016/j.physb.2006.12.038
[9] E. Shamonina, V. A. Kalinin, K. H. Ringhofer and L. Solymar, “Magneto-Inductive Waveguide,” Electronics Letters, Vol. 38, No. 8, 2002, pp. 371-373. doi:10.1049/el:20020258
[10] R. R. A. Syms, E. Shamonina and L. Solymar, “Magnetoinductive Waveguide Devices,” IEE Proceedings on Microwave Antennas Propagation, Vol. 153, No. 2, 2006, pp. 111-121. doi:10.1049/ip-map:20050119
[11] R. R. A. Syms, O. Sydoruk, E. Shamonina and L. Solymar, “Higher Order Interactions in Magneto-Inductive Waveguides,” Metamaterials, Vol. 1, No. 1, 2007, pp. 44- 51. doi:10.1016/j.metmat.2007.02.005
[12] R. R. A. Syms, E. Shamonina, V. Kalinin and L. Solymar, “A Theory of Metamaterial Based on Periodically Loaded Transmission Lines: Interaction between Magnetoinductive and Electromagnetic Waves,” Journal of Applied Phy- sics, Vol. 97, 2005, pp. (064909)1-6.
[13] M. J. Freire, R. Marques, F. Medina, M. A. G. Laso and F. Martin, “Planar Magnetoinductive Wave Transducers: Theory and Applications,” Applied Physics Letters, Vol. 85, No. 19, 2004, pp. 4439-4441. doi:10.1063/1.1814428
[14] R. Marques, F. Martin and M. Sorolla, “Metamaterials with Negative Parameters Theory, Design and Microwave Applications,” Wiley Interscience, John Wiley and Sons, Hoboken, 2008.
[15] P. Y. Chen and A. Alu, “Dual-Mode Miniaturized Elliptical Patch Antenna with μ-Negative Metamaterials,” IEEE Antennas and Wireless Propagation Letters, Vol. 9, 2010, pp. 351-354.
[16] J. Xiong, H. Li, Y. Jin and S. He, “Modified TM020 Mode of a Rectangular Patch Antenna Partially Loaded with Metamaterial for Dual-Band Applications,” IEEE Antennas and Wireless Propagation Letters, Vol. 8, 2009, pp. 1006-1009. doi:10.1109/LAWP.2009.2030771
[17] F. Bilotti, A. Alu and L. Vegni, “Design of Miniaturized Metamaterial Patch Antenna with μ-Negative Loading,” IEEE Transactions on Antennas and Propagation, Vol. 56, No. 6, 2008, pp. 1640-1647. doi:10.1109/TAP.2008.923307
[18] L.-W. Li, Y.-N. Li and J. R. Mosig, “Design of a Novel Rectangular Patch Antenna with Planar Metamaterial Patterned Substrate,” Proceedings of International Workshop on Antenna Technology, Chiba, 4-6 March 2008, pp. 123-126.
[19] C. Caloz and T. Itoh, “Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications,” Wiley Interscience, John Wiley and Sons, Hoboken, 2006.
[20] F. Bilotti, A. Toscano, L. Vegni, K. Aydin, K. B. Alici and E. Ozbzy, “Equivalent-Circuit Models for the Design of Metamaterials Based on Artificial Magnetic Inclusions,” IEEE Transactions on Microwave Theory and Techniques, Vol. 55, No. 12, 2007, pp. 2865-2873. doi:10.1109/TMTT.2007.909611
[21] S. S. Mohan, “Design, Modeling and Optimization of On- Chip Inductor and Transformer Circuits,” Ph.D. Dissertation, Stanford University, Palo Alto, 1999.
[22] J. Wang, S. Qu, Z. Xu, H. Ma, Y. Yang and C. Gu, “A Controllable Magnetic Metamaterial: Split Ring Resonator with Rotated Inner Ring,” IEEE Transactions on Antennas and Propagation, Vol. 56, No. 7, 2008, pp. 2018- 2022. doi:10.1109/TAP.2008.924728
[23] A. K. Gautam and B. R. Vishwakarma, “Frequency Agile Microstrip Antenna Using Symmetrically Loaded Tunnel Diodes,” Indian Journal of Radio and Space Physics, Vol. 35, 2006, pp. 212-216.
[24] I. J. Bahal and P. Bhartia, “Microstrip Antennas,” Artech House, London, 1980.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.