Share This Article:

Two Theoretical Approaches in Solid-State Nuclear Magnetic Resonance Spectroscopy

Abstract Full-Text HTML XML Download Download as PDF (Size:232KB) PP. 458-463
DOI: 10.4236/jmp.2014.56055    3,837 Downloads   4,824 Views   Citations

ABSTRACT

We present the theories used in solid-state nuclear magnetic resonance and the expansion schemes used as numerical integrators for solving the time dependent Schrodinger Equation. We highlight potential future theoretical and numerical directions in solid-state nuclear magnetic resonancesuch as the Chebychev expansion and the transformation of Cayley.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Mananga, E. (2014) Two Theoretical Approaches in Solid-State Nuclear Magnetic Resonance Spectroscopy. Journal of Modern Physics, 5, 458-463. doi: 10.4236/jmp.2014.56055.

References

[1] Schrodinger, E. (1926) Physical Reviews, 28, 1049-1070. http://dx.doi.org/10.1103/PhysRev.28.1049
[2] Dirac, P.A.M. (1958) Theprinciples of Quantum Mechanics. 4th Edition, Oxford University Press, Oxford.
[3] Hazewinkel, M. (2001) Schrodinger Equation. Encyclopedia of Mathematics, Springer.
[4] Müller-Kirsten, H.J.W. (2012) Introduction to Quantum Mechanics: Schrodinger Equation and Path Integral. 2nd Edititon, World Scientific. http://dx.doi.org/10.1142/8428
[5] Griffiths, D.J. (2004) Introduction to Quantum Mechanics. 2nd Edition, Benjamin Cummings.
[6] Vandersypen, L.M.K. and Chuang, I.L. (2004) Reviews of Modern Physics, 76, 1034.
[7] Rienstra, C.M., Tucker-Kellogg, L., Jaroniec, C.P., Hohwy, M., Reif, B., McMahon, M.T., Tidor, B., Lozano-Perez, T. and Griffin, R.G. (2002) Proceedings of National Academy Science of the USA, 99, 10260.
http://dx.doi.org/10.1073/pnas.152346599
[8] Ernst, R.R., Bodenhausen, G. and Wokaun, A. (1987) Clarendon. Oxford.
[9] Mananga, E.S., Roopchand, R., Rumala, Y.S. and Boutis, G.S. (2007) Journal of Magnetic Resonance, 185, 28.
http://dx.doi.org/10.1016/j.jmr.2006.10.016
[10] Mananga, E.S., Rumala, Y.S. and Boutis, G.S. (2006) Journal of Magnetic Resonance, 181, 296.
http://dx.doi.org/10.1016/j.jmr.2006.05.015
[11] Rhim, W.-K., Pines, A. and Waugh, J.S. (1971) Physical Review B, 3, 684. http://dx.doi.org/10.1103/PhysRevB.3.684
[12] Eden, M. and Levitt, M.H. (1999) Journal of Chemical Physics, 111, 1511. http://dx.doi.org/10.1063/1.479410
[13] Carravetta, M., Eden, M., Zhao, X., Brinkmann, A. and Levitt, M.H. (2000) Chemical Physical Letters, 321, 205.
http://dx.doi.org/10.1016/S0009-2614(00)00340-7
[14] Levitt, M.H. (2008) Journal of Chemical Physics, 128, 052205. http://dx.doi.org/10.1063/1.2831927
[15] Tycko, R. (1990) Journal of Chemical Physics, 92, 5776. http://dx.doi.org/10.1063/1.458398
[16] Vega, S. and Pines, A. (1977) Journal of Chemical Physics, 66, 5624. http://dx.doi.org/10.1063/1.433884
[17] Haeberlen, U. and Waugh, J.S. (1968) Physical Review, 175, 453. http://dx.doi.org/10.1103/PhysRev.175.453
[18] Shirley, J.H. (1965) Physical Review B, 138, 979. http://dx.doi.org/10.1103/PhysRev.138.B979
[19] Maricq, M.M. (1982) Physical Review B, 25, 6622. http://dx.doi.org/10.1103/PhysRevB.25.6622
[20] Zur, Y., Levitt, M.H. and Vega, S. (1983) Journal of Chemical Physics, 78, 5293. http://dx.doi.org/10.1063/1.445483
[21] Fer, F. (1958) Bulletin de la Classe des Sciences, Academie Royale de Belgique, 44, 818.
[22] Mananga, E.S. and Charpentier, T. (2011) Journal of Chemical Physics, 135, Article ID: 044109.
http://dx.doi.org/10.1063/1.3610943
[23] Magnus, W. (1954) Communications on Pure and Applied Mathematics, 7, 649-673.
http://dx.doi.org/10.1002/cpa.3160070404
[24] Dumont, R.S., Jain, S. and Bain, A. (1997) Journal of Chemical Physics, 106, 5928.
http://dx.doi.org/10.1063/1.473258
[25] Tal-Ezer, H. and Kosloff, R. (1984) Journal of Chemical Physics, 81, 3967. http://dx.doi.org/10.1063/1.448136
[26] Rivlin, T.J. (1990) Chebychev Polynomials. 2nd Edition, Wiley, New York, 188.
[27] Blanes, S., Casas, F., Oteo, J.A. and Ros, J. (2009) Physics Reports, 470, 151-238.
http://dx.doi.org/10.1016/j.physrep.2008.11.001
[28] Blanes, S., Casas, F. and Ros, J. (2002) BIT Numerical Mathematics, 42, 262-284.
http://dx.doi.org/10.1023/A:1021942823832
[29] Moler, C.B. and Van Loan, C.F. (2003) SIAM Review, 45, 3-49.
[30] Nettesheim, P. (2000) Mixed Quantum-Classical Dynamics: A Unified Approach to Mathematical Modelling and Numerical Simulation. Ph.D. Thesis, Freie Universitat Berlin, Berlin.
[31] Iserles, A. (2001) Foundations of Computational Mathematics, 1, 129-160. http://dx.doi.org/10.1007/s102080010003
[32] Süli, E. and Mayers, D. (2003) An Introduction to Numerical Analysis. Cambridge University Press, Cambridge.
http://dx.doi.org/10.1017/CBO9780511801181
[33] Zou, C.W. and Shi, J.L. (2009) Nonlinear Analysis, 71, 1100-1107. http://dx.doi.org/10.1016/j.na.2008.11.033
[34] Lopez, L. and Politi, T. (2001) Applied Numerical Mathematics, 36, 35-55.
http://dx.doi.org/10.1016/S0168-9274(99)00049-5
[35] Leimkuhler, J.B. and Van Vleck, E.S. (1997) Numerische Mathematik, 77, 269-282.
http://dx.doi.org/10.1007/s002110050286
[36] Chu, M.T. and Morris, L.K. (1988) SIAM Journal on Numerical Analysis, 25, 1383-1391.
http://dx.doi.org/10.1137/0725080
[37] Mananga, E.S., Reid, A.E. and Charpentier, T. (2012) Solid State Nuclear Magnetic Resonance, 41, 32-47.
http://dx.doi.org/10.1016/j.ssnmr.2011.11.004
[38] Leskes, M., Madhu, P.K. and Vega, S. (2010) Progress in Nuclear Magnetic Resonance Spectroscopy, 57, 345-380.
http://dx.doi.org/10.1016/j.pnmrs.2010.06.002
[39] Scholz, I., Van Beek, J.D. and Ernst, M. (2010) Solid State Nuclear Magnetic Resonance, 37, 39-59.
http://dx.doi.org/10.1016/j.ssnmr.2010.04.003

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.