Induction of Apoptosis and Acetylation of Histone H3 and H4 by Arctigenin in the Human Melanoma Cell Line SK-MEL-28
Jin Boo Jeong, Se Chul Hong, Jin Suk Koo, Hyung Jin Jeong
.
DOI: 10.4236/fns.2011.22018   PDF    HTML   XML   5,257 Downloads   9,987 Views   Citations

Abstract

Cutaneous melanoma is one of the most aggressive forms of skin cancer. Arctigenin, one of the major bioactive compo-nents of Arctii Fructus, has been reported to exhibit antioxidant, antitumor and anti-inflammatory activities. In the pre-sent study, we investigated the effect of arctigenin on induction of apoptosis in highly metastatic SK-MEL-28 human melanoma cells. Arctigenin inhibited growth of SK-MEL-28 cells in a dose-dependent manner. Treatment of SK-MEL-28cells with arctigenin caused cleavage of caspases 3, 7 and 9, and poly (ADP-ribose) polymerase in a dose-dependent manner. Furthermore, acetylation of histone H3 and H4 in the SK-MEL-28 cells was dramatically increased by arctigenin treatment. Collectively, these findings indicate that arctigenin-induces apoptosis of SK-MEL-28 melanoma cells via activation of caspases and histone acetylation.

Share and Cite:

J. Jeong, S. Hong, J. Koo and H. Jeong, "Induction of Apoptosis and Acetylation of Histone H3 and H4 by Arctigenin in the Human Melanoma Cell Line SK-MEL-28," Food and Nutrition Sciences, Vol. 2 No. 2, 2011, pp. 128-132. doi: 10.4236/fns.2011.22018.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] R. Doll and R. Peto, “The Causes of Cancer: Quantitative Estimates of Avoidable Risks of Cancer in the United States Today,” Journal of National Cancer Institute, Vol. 66, No. 6, 1981, pp. 1191-1308.
[2] C. R. Wolf, “Chemoprevention: Increased Potential to Bear Fruit,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 98, No. 6, 2001, pp. 2941-2943. doi:10.1073/pnas.071042698
[3] M. B. Sporn and N. Suh, “Chemoprevention: An Essential Approach to Controlling Cancer,” Nature Reviews Cancer, Vol. 2, No. 7, 2002, pp. 537-543. doi:10.1038/nrc844
[4] V. L. Go, R. R. Butrum and D. A. Wong, “Diet, Nutrition, and Cancer Prevention: The Postgenomic Era,” Journal of Nutrition, Vol. 133, No. 11, 2003, pp. 3830S-3836S.
[5] C. S. Yang, J. M. Landau, M. T. Huang and H. L. Newmark, “Inhibition of Carcinogenesis by Dietary Polyphenolic Compounds,” Annual Review of Nutrition, Vol. 21, 2001, pp. 381-406. doi:10.1146/annurev.nutr.21.1.381
[6] Y. Kuroda and Y. Hara, “Antimutagenic and Anticarcinogenic Activity of Tea Polyphenols,” Mutation Research, Vol. 436. No. 1, 1999, pp. 69-97.
[7] M. Nihal, N. Ahmad, H. Mukhtar and G. S. Wood, “Anti-proliferative and Proapoptotic Effects of epigallo- catechin-3-gallate on Human Melanoma: Possible Implications for the Chemoprevention of Melanoma,” International Journal of Cancer, Vol. 114, No. 4, 2005, pp. 513-521. doi:10.1002/ijc.20785
[8] S. Caltagirone, C. Rossi, A. Poggi, F. O. Ranelletti, P. G. Natali, M. Brunetti, F. B. Aiello and M. Piantelli, “Flavonoids Apigenin and Quercetin Inhibit Melanoma Growth and Metastatic Potential,” International Journal of Cancer, Vol. 87, No. 4, 2000, pp. 595-600. doi:10.1002/1097-0215(20000815)87:4<595::AID-IJC21>3.0.CO;2-5
[9] J. A. Milner, S. S. McDonald, D. E. Anderson and P. Greenwald, “Molecular Targets for Nutrients Involved with Cancer Prevention,” Nutrition and Cancer, Vol. 41, No. 1-2, 2001, pp. 1-16. doi:10.1207/S15327914NC41-1&2_1
[10] G. J. Soleas, E. P. Diamandis and D. M. Goldberg, “Resveratrol: A Molecule Whose Time has Come? And gone?” Clinical Biochemistry, Vol. 30, No. 2, 1997, pp. 91-113. doi:10.1016/S0009-9120(96)00155-5
[11] S. Awale, J. Lu, S. K. Kalauni, Y. Kurashima, Y. Tezuka, S. Kadota and H. Esumi, “Identification of Arctigenin as an Antitumor Agent having the Ability to Eliminate the Tolerance of Cancer Cells to Nutrient Starvation,” Cancer Research, Vol. 66, No. 3, 2006, pp. 1751-1757. doi:10.1158/0008-5472.CAN-05-3143
[12] M. K. Cho, Y. P. Jang, Y. C. Kim and S. G. Kim, “Arctigenin, a Phenylpropanoid Dibenzylbutyrolactone Lignan, Inhibits MAP Kinases and AP-1 Activation via Potent MKK Inhibition: The Role in TNF-α Inhibition,” International Immunopharmacology, Vol. 4, No. 10-11, 2004, pp. 1419-1429. doi:10.1016/j.intimp.2004.06.011
[13] T. Matsumoto, K. Hosono-Nishiyama and H. Yamada, “Anti-proliferative and Apoptotic Effects of Butyrolactone Lignans from Arctium Lappa on Leukemic Cells,” Planta Medica, Vol. 72, No. 3, 2006, pp. 276-278. doi:10.1055/s-2005-916174
[14] Y. P. Jang, S. R. Kim, Y. H. Choi, J. Kim, S. G. Kim and G. J. Markelonis, T. H. Oh and Y. C. Kim, “Arctigenin Protects Cultured Cortical Neurons from Glutamate-Induced Neurodegeneration by Binding to Kainate Receptor,” Journal of Neuroscience Research, Vol. 68, No. 2, 2002, pp. 233-240. doi:10.1002/jnr.10204
[15] Y. P. Jang, S. R. Kim and Y. C. Kim, “Neuroprotective Dibenzylbutyrolactone Lignans of Torreya Nucifera,” Planta Medica, Vol. 67, No. 5, 2001, pp. 470-472. doi:10.1055/s-2001-15804
[16] S. Moritani, M. Nomura, Y. Takeda and K. Miyamoto, “Cytotoxic Components of Bardanae Fructus (Goboshi),” Biological & Pharmaceutical Bulletin, Vol. 19, No. 11, 1996, pp. 1515-1517.
[17] K. Umehara, M. Nakamura, T. Miyase, M. Kuroyanagi and A. Ueno, “Studies on Differentiation Inducers: VI. Lignan Derivatives from Arctium Fructus (2),” Chemical & Pharmaceutical Bulletin, Vol. 44, No. 12, 1996, pp. 2300-2304.
[18] J. F. Thompson, R. A. Scoley and R. F. Kefford, “Cutaneous Melanoma,” Lancet, Vol. 265, No. 9460, 2005, pp. 687-701.
[19] J. D. Jensen, G. J. Wing and R. P. Dellavalle, “Nutrition and Melanoma Prevention,” Clinics in Dermatology, Vol. 28, No. 6, 2010, pp. 644-649. doi:10.1016/j.clindermatol.2010.03.026
[20] T. M. Pawlik and V. K. Sondak, “Malignant Melanoma: Current State of Primary and Adjuvant Treatment,” Critical Reviews in Oncology/Hematology, Vol. 45, No. 3, 2003, pp. 245-264. doi:10.1016/S1040-8428(02)00080-X
[21] P. Hersey, “Apoptosis and Melanoma: How New Insights are Effecting the Development of New Therapies for Melanoma,” Current Opinion in Oncology, Vol. 18, No. 2, 2006, pp. 189-196. doi:10.1097/01.cco.0000208794.24228.9f
[22] Y. Shi, “Mechanisms of Caspase Activation and Inhibition during Apoptosis,” Molecular Cell, Vol. 9, No. 3, 2002, pp. 459-470. doi:10.1016/S1097-2765(02)00482-3
[23] V. A. Spencer and J. R. Davie, “Role of Covalent Modifications of Histones in Regulating Gene Expression,” Gene, Vol. 240, No. 1, 1999, pp. 1-12. doi:10.1016/S0378-1119(99)00405-9
[24] A. W. Throne, D. Kmiciek, P. Sautiere and C. Crane-Robinson, “Patterns of Histone Acetylation,” European Journal of Biochemistry, Vol. 193, No. 3, 1990, pp. 701-713. doi:10.1111/j.1432-1033.1990.tb19390.x
[25] D. G. Edmondson, J. K. Davie, J. Zhou, B. Mirnikjoo, K. Tatchell and S. Y. R. Dent, “Site-specific Loss of Acetylation upon Phosphorylation of Histone H3,” Journal of Biological Chemistry, Vol. 277, No. 33, 2002, pp. 29496-29502. doi:10.1074/jbc.M200651200
[26] B. D. Strahl and C. D. Allis, “The Language of Covalent Histone Modifications,” Nature, Vol. 403, No. 6765, 2000, pp. 41-45.
[27] N. Druesne, A. Pagniez, C. Mayeur, M. Thomas, C. Cherbuy, P. H. Duee, P. Martel and C. Chaumontet, “Diallyl Disulfide (DADS) Increases Histone Acetylation and p21(waf1/cip1) Expression in Human Colon Tumor Cell Lines,” Carcinogenesis, Vol. 25, No. 7, 2004, pp. 1227-1236.
[28] M. O. Hengartner, “The Biochemistry of Apoptosis,” Nature, Vol. 407, 2000, pp. 770-776. doi:10.1038/35037710
[29] D. Hanahan and R. A. Weinberg, “The Hallmarks of Cancer,” Cell, Vol. 100, No. 1, 2000, pp. 57-70. doi:10.1016/S0092-8674(00)81683-9
[30] R. J. Bold, S. Virudachalam and D. J. McConkey, “BCL2 Expression Correlates with Metastatic Potential in Pancreatic Cancer Cell Lines,” Cancer, Vol. 92, No. 5, 2001, pp. 1122-1129. doi:10.1002/1097-0142(20010901)92:5< 1122::AID-CNCR1429>3.0.CO;2-H
[31] H. S. Jun, T. Park, C. K. Lee, M. K. Kang, M. S. Park, H. I. Kang, Y. J. Surh and O. H. Kim, “Capsaicin Induced Apoptosis of B16-F10 Melanoma Cells through Down- regulation of Bcl-2,” Food and Chemical Toxicology, Vol. 45, No. 5, 2007, pp. 708-715. doi:10.1016/j.fct.2006.10.011
[32] M. Mouria, A. S. Gukovskay, Y. Jung, P. Buechler, O. J. Hines, H. A. Reber and S. J. Pandol, “Food-derived Polyphenols Inhibit Pancreatic Cancer Growth through Mitochondrial Cytochrome c Release and Apoptosis,” International Journal of Cancer, Vol. 98, No. 5, 2002, pp. 761-769.
[33] U. Mahiknecht and D. Hoelzer, “Histone Acetylation Modifiers in the Pathogenesis of Malignant Disease,” Molecular Medicine, Vol. 6, No. 8, 2000, pp. 623-644.
[34] M. Grunstein, “Histone Acetylation in Chromatin Structure and Transcription,” Nature, Vol. 389, No. 6649, 1997, pp. 641-643.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.