Expression of the Viral Antigen VP60 in Transgenic Potatoes and its Effect on the Nutritional Composition of Tubers

Abstract

Recombinant plant-derived pharmaceuticals have been investigated for the last two decades and some products will soon be brought to market. Since veterinary pharmaceuticals seem to be the front-runners of plant-derived vaccines, we selected one model subunit vaccine, the structural capsid protein VP60 against rabbit haemorrhagic disease, and ana-lyzed the expression of three different sequences representing the vp60 open reading frame in potato plants. The gen-eration of antigenic VP60 molecules in the leaf and tuber tissue of potato was tremendously enhanced by replacing virus-derived sequences with plant-optimized codons. In order to identify potentially undesirable alterations in the composition of these genetically modified food components, we studied their nutrient composition and nutritional value in comparison to two parental conventional breeding varieties (Albatros and Desiree). The largest differences in nutrient composition were found between the two conventional breeds and between conventional Desiree and its near-isogenic genetically modified potato plant, indicating that genetic modification as well as conventional breeding can influence nutrient composition. Nevertheless, most parameters of nutritional value seemed to be more affected by conventional breeding than by genetic modification.

Share and Cite:

H. Mikschofsky, A. Hartmann, P. Janczyk, G. Keil, P. König, H. Schirrmeier, M. Hammer, H. Junghans, K. Schmidt, J. Schmidtke, W. Souffrant, M. Schwerin and I. Broer, "Expression of the Viral Antigen VP60 in Transgenic Potatoes and its Effect on the Nutritional Composition of Tubers," Food and Nutrition Sciences, Vol. 2 No. 2, 2011, pp. 74-86. doi: 10.4236/fns.2011.22010.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] K. Yonekura-Sakakibara and K. Saito, “Review: Genetically Modified Plants for the Promotion of Human Health,” Biotechnology Letters, Vol. 28, 2006, pp. 1983- 1991. doi:10.1007/s10529-006-9194-4
[2] M. Huhns, K. Neumann, T. Hausmann, K. Ziegler, F. Klemke, U. Kahmann, D. Staiger, W. Lockau, E. K. Pistorius and I. Broer, “Plastid Targeting Strategies for Cyanophycin Synthetase to Achieve High-Level Polymer Accumulation in Nicotiana Tabacum,” Plant Biotechnol Journal, Vol. 6, No. 4, 2008, pp. 321-336. doi:10.1111/j.1467-7652.2007.00320.x
[3] K. Neumann, D. P. Stephan, K. Ziegler, M. Huhns, I. Broer, W. Lockau and E. K. Pistorius, “Production of Cyanophycin, a Suitable Source for the Biodegradable Polymer Polyaspartate, in Transgenic Plants,” Plant Biotechnology Journal, Vol. 3, No. 2, 2005, pp. 249-258. doi:10.1111/j.1467-7652.2005.00122.x
[4] J. A. Paine, C. A. Shipton, S. Chaggar, R. M. Howells, M. J. Kennedy, G. Vernon, S. Y. Wright, E. Hinchliffe, J. L. Adams, A. L. Silverstone and R. Drake, “Improving the Nutritional Value of Golden Rice through Increased Pro-Vitamin A Content,” Nature Biotechnology, Vol. 23, No. 4, 2005, pp. 482-488. doi:10.1038/nbt1082
[5] S. Storozhenko, S. Ravanel, G. F. Zhang, F. Rebeille, W. Lambert and D. Van Der Straeten, “Folate Enhancement in Staple Crops by Metabolic Engineering,” Trends in Food Science & Technology, Vol. 16, No. 6-7, 2005, pp. 271-281. doi:10.1016/j.tifs.2005.03.007
[6] A. V. Karasev, S. Foulke, C. Wellens, A. Rich, K. J. Shon, I. Zwierzynski, D. Hone, H. Koprowski and M. Reitz, “Plant Based HIV-1 Vaccine Candidate: Tat Protein Produced in Spinach,” Vaccine, Vol. 23, 2005, pp. 1875- 1880. doi:10.1016/j.vaccine.2004.11.021
[7] J. K. C. Ma, P. M. W. Drake, D. Chargelegue, P. Obregon and A. Prada, “Antibody Processing and Engineering in Plants, and New Strategies for Vaccine Production,” Vaccine, Vol. 23, No. 15, 2005, pp. 1814-1818.
[8] J. K .C. Ma, E. Barros, R. Bock, P. Christou, P. J. Dale, P. J. Dix, R. Fischer, J. Irwin, R. Mahoney, M. Pezzotti, S. Schillberg, P. Sparrow, E. Stoger and R. M.Twyman, “Molecular Farming for New Drugs and Vaccines— Current Perspectives on the Production of Pharmaceuticals in Transgenic Plants,” Embo Reports, Vol. 6, 2005, pp. 593-599. doi:10.1038/sj.embor.7400470
[9] S. J. Streatfield and J. A. Howard, “Plant-Based Vaccines,” International Journal for Parasitology, Vol. 33, No. 5-6, 2003, pp. 479-493.
[10] D. M. Floss, D. Falkenburg and U. Conrad, “Production of Vaccines and Therapeutic Antibodies for Veterinary Applications in Transgenic Plants: An Overview,” Transgenic Research, Vol. 16, No. 3, 2007, pp. 315-332.
[11] M. J. D. Santos and A. Wigdorovitz, “Transgenic Plants for the Production of Veterinary Vaccines,” Immunology and Cell Biology, Vol. 83, No. 3, 2005, pp. 229-238.
[12] J. L. Martinez-Torrecuadrada, E. Cortes, C. Vela, J. P. M. Langeveld, R. H. Meloen, K. Dalsgaard, W. D. O. Hamilton and J. I. Casal, “Antigenic Structure of the Capsid Protein of Rabbit Haemorrhagic Disease Virus,” Journal of General Virology, Vol. 79, 1998, pp. 1901-1909.
[13] B. D. Cooke. “Rabbit Haemorrhagic Disease: Field Epidemiology and the Management of Wild Rabbit Populations,” Rev Sci Tech, Vol. 21, No. 2, 2002, pp. 347-358.
[14] H.-B. Huang, “Vaccination against and Immune Response to Viral Haemorrhagic Disease of Rabbits: A Review of Research in the People’s Republic of China,” Rev sci tech Off int Epiz, Vol. 10, 1991, pp. 481-498.
[15] C. Alonso, J. M. Oviedo, J. M. Martin-Alonso, E. Diaz, J. A. Boga and F. Parra, “Programmed Cell Death in the Pathogenesis of Rabbit Hemorrhagic Disease,” Archives of Virology, Vol. 143, No. 2, 1998, pp. 321-332. doi:10.1007/s007050050289
[16] J. A. Boga, R. Casais, M. S. Marin, J. M. Martinalonso, R. S. Carmenes, M. Prieto and F. Parra, “Molecular-Cloning, Sequencing and Expression in Escherichia-Coli of the Capsid Protein Gene from Rabbit Hemorrhagic-Disease Virus (Spanish Isolate Ast/89),” Journal of General Virology, Vol. 75, 1994, pp. 2409-2413. doi:10.1099/0022-1317-75-9-2409
[17] J. A. Boga, J. M. M. Alonso, R. Casais and F. Parra, “A Single Dose Immunization with Rabbit Haemorrhagic Disease Virus Major Capsid Protein Produced in Saccharomyces Cerevisiae Induces Protection,” Journal of General Virology, Vol. 78, No. 9, 1997, pp. 2315-2318.
[18] S. Laurent, J. F. Vautherot, M. F. Madelaine, G. G. Le and D. Rasschaert, “Recombinant Rabbit Hemorrhagic Disease Virus Capsid Protein Expressed in Baculovirus Self-Assembles into Viruslike Particles and Induces Protection,” Journal of Virology, Vol. 68, 1994, pp. 6794- 6798.
[19] H. S. Nagesha, L. F. Wang, A. D. Hyatt, C. J. Morrissy, C. Lenghaus and H. A. Westbury, “Self-Assembly, Antigenicity, and Immunogenicity of the Rabbit Hemorrhagic-Disease Virus (Czechoslovakian Strain V-351) Capsid Protein Expressed in Baculovirus,” Archives of Virology, Vol. 140, 1995, pp. 1095-1108.
[20] M. Sibilia, M. B. Boniotti, P. Angoscini, L. Capucci and C. Rossi, “2 Independent Pathways of Expression Lead to Self-Assembly of the Rabbit Hemorrhagic-Disease Virus Capsid Protein,” Journal of Virology, Vol. 69, 1995, pp. 5812-5815.
[21] S. Bertagnoli, J. Gelfi, F. Petit, J. F. Vautherot, D. Rasschaert, S. Laurent, G. LeGall, E. Boilletot, J. Chantal and C. BoucrautBaralon, “Protection of Rabbits against Rabbit Viral Haemorrhagic Disease with a Vaccinia-RHDV Recombinant Virus,” Vaccine, Vol. 14, No. 6, 1996, pp. 506-510. doi:10.1016/0264-410X(95)00232-P
[22] S. Bertagnoli, J. Gelfi, G. LeGall, E. Boilletot, J. F. Vautherot, D. Rasschaert, S. Laurent, F. Petit, C. BoucrautBaralon and A. Milon, “Protection against Myxomatosis and Rabbit Viral Hemorrhagic Disease with Recombinant Myxoma Viruses Expressing Rabbit Hemorrhagic Disease Virus Capsid Protein,” Journal of Virology, Vol. 70, No. 8, 1996, pp. 5061-5066.
[23] L. Fischer, F. X. Legros, P. W. Mason and E. Paoletti, “A Recombinant Canarypox Virus Protects Rabbits against a Lethal Rabbit Hemorrhagic Disease Virus (RHDV) Challenge,” Vaccine, Vol. 15, No. 1, 1997, pp. 90-96.
[24] S. Castanon, M. S. Marin, J. M. Martin-Alonso, J. A. Boga, R. Casais, J. M. Humara, R. J. Ordas and F. Parra, “Immunization with Potato Plants Expressing VP60 Protein Protects against Rabbit Hemorrhagic Disease Virus,” Journal of Virology, Vol. 73, No. 5, 1999, pp. 4452-4455.
[25] S. Castanon, J. M. Martin-Alonso, M. S. Marin, J. A. Boga, P. Alonso, F. Parra and R. J. Ordas, “The Effect of the Promoter on Expression of VP60 Gene from Rabbit Hemorrhagic Disease Virus in Potato Plants,” Plant Science, Vol. 162, No. 1, 2002, pp. 87-95. doi:10.1016/S0168-9452(01)00535-0
[26] M. R. Fernandez-Fernandez, M. Mourino, J. Rivera, F. Rodriguez, J. Plana-Duran and J. A. Garcia, “Protection of Rabbits against Rabbit Hemorrhagic Disease Virus by Immunization with the VP60 Protein Expressed in Plants with a Potyvirus-Based Vector,” Virology, Vol. 280, No. 2, 2001, pp. 283-291.
[27] J. PlanaDuran, M. Bastons, M. J. Rodriguez, I. Climent, E. Cortes, C.Vela and I. Casal, “Oral Immunization of Rabbits with VP60 Particles Confers Protection against Rabbit Hemorrhagic Disease,” Archives of Virology, Vol. 141, 1996, pp. 1423-1436.
[28] J. M. Martin-Alonso, S. Castanon, P. Alonso, F. Parra and R. Ordas, “Oral Immunization Using Tuber Extracts from Transgenic Potato Plants Expressing Rabbit Hemorrhagic Disease Virus Capsid Protein,” Transgenic Research, Vol. 12, 2003, pp. 127-130. doi:10.1023/A:1022112717331
[29] ILSI, “Nutritional and Safety Assessments of Foods and Feeds Nutritionally Improved through Biotechnolgy,” Comprehensive Reviews in Food Science and Food Safety, Vol. 3, 2004, pp. 38-104.
[30] G. Flachowsky, A. Chesson, K. Aulrich. “Animal Nutrition with Feeds from Genetically Modified Plants,” Archives of Animal Nutrition, Vol. 59, 2005, pp. 1-40.
[31] J. A. Nordlee, S. L. Taylor, J. A. Townsend, L. A. Thomas and R. K. Bush, “Identification of a Brazil-Nut Allergen in Transgenic Soybeans,” New England Journal of Medicine, Vol. 334, No. 11, 1996, pp. 688-692. doi:10.1056/NEJM199603143341103
[32] V. E. Prescott, P. M. Campbell, A. Moore, J. Mattes, M. E. Rothenberg, P. S. Foster, T. J. V. Higgins and S. P. Hogan, “Transgenic Expression of Bean Alpha-Amylase Inhibitor in Peas Results in Altered Structure and Immunogenicity,” Journal of Agricultural and Food Chemistry, Vol. 53, 2005, pp. 9023-9030.
[33] A. G. Kuipers, W. J. Soppe, E. Jacobsen and R. G. Visser, “Factors Affecting the Inhibition by Antisense RNA of Granule-Bound Starch Synthase Gene Expression in Potato,” Molecular & General Genetics, Vol. 246, 1995, pp. 745-755. doi:10.1007/BF00290722
[34] R. Horsch, J. Fry, N. L. Hoffmann, D. Eichholtz, S. G. Rogers and R. T. Fraley, “A Simple and General Method for Transferring Genes into Plants,” Science, Vol. 227, No. 4691, 1985, pp. 1229-1231.
[35] M. M. Bradford. “Rapid and Sensitive Method for Quantitation of Microgram Quantities of Protein Utilizing Principle of Protein-Dye Binding,” Analytical Biochemistry, Vol. 72, 1976, pp. 248-254.
[36] H. Schirrmeier, I. Reimann, B. Kollner and H. Granzow, “Pathogenic, Antigenic and Molecular Properties of Rabbit Haemorrhagic Disease Virus (RHDV) Isolated from Vaccinated Rabbits: Detection and Characterization of Antigenic Variants,” Archives of Virology, Vol. 144, 1999, pp. 719-735. doi:10.1007/s007050050538
[37] I. S. Curtis, J. B. Power and M. R. Davey, “NPTII Assays for Measuring Gene Expression and Enzyme Activity in Transgenic Plants,” Methods in Molecular Biology, Vol. 49, 1995, pp. 149-159.
[38] C. Naumann and R. Bassler, VDLUFA-Verlag, Darmstadt, 1993.
[39] W. W. Hauck, “A Review of Goodness of Fit Statistics for Use in the Development of Logistic Regression Models,” American Journal of Epidemiology, Vol. 116, 1982, p. 732.
[40] W. Kirsten, “Organic Elemental Analysis: Ultramicro, Micro and Trace Methods,” Academic Press/Harcourt Brace Jovanovich, New York, 1983.
[41] P. Janczyk, “Evaluation of Nutritional Value and Activity of Green Microalgae Chlorella Vulgaris in Rats and Mice,” Mensch und Buch Verlag, Berlin, 2005.
[42] F. Kreienbring and J. Wuensche, “Bericht über die Stickstoff- und Aminos?urenbestimmungs-Enquete 1971- 772 im Themekreis und über weitere methodische Arbeiten.,” Akad Landwirtsch-Wiss DDR, Vol. 124, 1974, p. 34.
[43] F. Kreienbring. “Weiter Ergebnisse zur vergleichenden Bestimmung von Aminos?uren.,” Nahrung, Vol. 31, 1987, pp. 855-862. doi:10.1002/food.19870310903
[44] Y. H. Joung, J. W. Youm, J. H. Jeon, B. C. Lee, C. J. Ryu, H. J. Hong, H. C. Kim, H. Joung and H. S. Kim, “Expression of the Hepatitis B Surface S And Pres2 Antigens in Tubers of Solanum Tuberosum,” Plant Cell Reports, Vol. 22, 2004, pp. 925-930.
[45] M. Hajirezaei, I. Eickmeier, V. Mittendorf, U. Sonnewald, L. Willmitzer, A. R. Fernie, “Expression of an Escherichia Coli Phosphoglucomutase in Potato (Solanum Tuberosum L.) Results in Minor Changes in Tuber Metabolism and a Considerable Delay in Tuber Sprouting,” Planta, Vol. 221, No. 6, 2005, pp. 915-927.
[46] S. V. Sawant, K. Kiran, P. K. Singh and R. Tuli, “Sequence Architecture Downstream of the Initiator Codon Enhances Gene Expression and Protein Stability in Plants,” Plant Physiology, Vol. 126, 2001, pp. 1630- 1636. doi:10.1104/pp.126.4.1630
[47] J. Roosien, F. A. van Engelen, G. A. de Jong, A. W. Borst-Vrenssen, J. F. Zilverentant, D. Bosch, W. J. Stiekema, F. J. Gommers, A. Schots and J. Bakker, “The C-Terminal KDEL Sequence Increases the Expression Level of a Single-Chain Antibody Designed to be Targeted to Both the Cytosol and the Secretory Pathway in Transgenic Tobacco,” Plant Molecular Biology, Vol. 30, 1996, pp. 781-793.
[48] T. Lagergard, M. Lindblad and J. Holmgren, “Local and Systemic Antibody Responses to Dextran-Cholera Toxin B Subunit Conjugates,” Infection and Immunity, Vol. 63, No. 5, 1995, pp. 2021-2025.
[49] G. Hajishengallis, S. K. Hollingshead, T. Koga and M. W. Russell, “Mucosal Immunization with a Bacterial Protein Antigen Genetically Coupled to Cholera Toxin A2/B Subunits,” Journal of Immunology, Vol. 154, 1995, pp. 4322-4332.
[50] J. Yu and W. H. R. Langridge, “A Plant-Based Multicomponent Vaccine Protects Mice from Enteric Diseases,” Nature Biotechnology, Vol. 19, 2001, pp. 548- 552. doi:10.1038/89297
[51] N. W. Choi, M. K. Estes and W. H. R. Langridge, “Synthesis and Assembly of a Cholera Toxin B Subunit-Rotavirus VP7 Fusion Protein in Transgenic Potato,” Molecular Biotechnology, Vol. 31, 2005, pp. 193-202. doi:10.1385/MB:31:3:193
[52] T. Harakuni, H. Sugawa, A. Komesu, M. Tadano and T. Arakawa, “Heteropentameric Cholera Toxin B Subunit Chimeric Molecules Genetically Fused to a Vaccine Antigen Induce Systemic and Mucosal Immune Responses: A Potential New Strategy to Target Recombinant Vaccine Antigens to Mucosal Immune Systems,” Infection and Immunity, Vol. 73, 2005, pp. 5654-5665.
[53] F. R. Vanderleij, R. G. F. Visser, A. S. Ponstein, E. Jacobsen and W. J. Feenstra, “Sequence of the Structural Gene for Granule-Bound Starch Synthase of Potato (Solanum-Tuberosum L) and Evidence for a Single Point Deletion in the AMF Allele,” Molecular & General Genetics, Vol. 228, 1991, pp. 240-248.
[54] S. V. Sawant, K. Kiran, P. K. Singh and R. Tuli, “Sequence Architecture Downstream of the Initiator Codon Enhances Gene Expression and Protein Stability in Plants,” Plant Physiology, Vol. 126, 2001, pp. 1630- 1636. doi:10.1104/pp.126.4.1630
[55] C. Gustafsson, S. Govindarajan and J. Minshull, “Codon bias and Heterologous Protein Expression,” Trends in Biotechnology, Vol. 22, 2004, pp. 346-353.
[56] D. G. Song, G. F. Sun, H. Y. Shan, X. Y. Peng, G. Q. Wang, X. M. Wang and J. Z. Tan, “Study on Regulation of 5’ Flanking Regions of Granule-Bound Starch Synthase Gene of Potato,” Acta Botanica Sinica, Vol. 40, 1998, pp. 796-800.
[57] R. G. Visser, A. Stolte and E. Jacobsen, “Expression of a Chimaeric Granule-Bound Starch Synthase-GUS Gene in Transgenic Potato Plants,” Plant Molecular Biology, Vol. 17, 1991, pp. 691-699.
[58] H. Mikschofsky, “Charakterisierung des Produktionssystem Pflanze für die rekombinante Impfstofferzeugung,” 2006.
[59] M. T. Chan and S. M. Yu, “The 3 ’ Untranslated Region of a Rice Alpha-Amylase Gene Functions as a Sugar-Dependent MRNA Stability Determinant,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 95, 1998, pp. 6543-6547. doi:10.1073/pnas.95.11.6543
[60] Z. Zou, C. Eibl and H. U. Koop, “The Stem-Loop Region of the Tobacco Psba 5’ Utr is an Important Determinant of Mrna Stability and Translation Efficiency,” Molecular Genetics and Genomics, Vol. 269, 2003, pp. 340-349.
[61] H. Mikschofsky, M. Hammer, P. Konig, G. Keil, H. Schirrmeier and I. Broer, “Plant Made Veterinary Vaccines against RHD,” Journal of Biotechnology, Vol. 131, No. 2, 2007, p. 44. doi:10.1016/j.jbiotec.2007.07.071
[62] M. Filipecki, Z. M. Yin, A. Wisniewska, M. Smiech, R. Malinowski and S. Malepszy, “Tissue-Culture-Res-ponsive and Autotetraploidy-Responsive Changes in Metabolic Profiles of Cucumber (Cuicumis Sativus L.),” Journal of Applied Genetics, Vol. 47, 2006, pp. 17-21.
[63] H. Rischer and K. M. Oksman-Caldentey, “Unintended Effects in Genetically Modified Crops: Revealed by Metabolomics,” Trends in Biotechnology, Vol. 24, 2006, pp. 102-104. doi:10.1016/j.tibtech.2006.01.009
[64] S. M. Jain, “Tissue Culture-Derived Variation in Crop Improvement,” Euphytica, Vol. 118, 2001, pp. 153-166.
[65] G. S. Catchpole, M. Beckmann, D. P. Enot, M. Mondhe, B. Zywicki, J. Taylor, N. Hardy, A. Smith, R. D. King, D. B. Kell, O. Fiehn and J. Draper, “Hierarchical Metabolomics Demonstrates Substantial Compositional Similarity between Genetically Modified and Conventional Potato Crops,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 102, 2005, pp. 14458-14462. doi:10.1073/pnas.0503955102
[66] P. Janczyk, C. Wolf, A. Hartmann, P. Junghans, M. Schwerin and W.-B. Souffrant, “Modification of Potatoes, by either Recombinant DNA Technology or Conventional Breeding, Affects their Nutritional Value for the Rat,” Archiva Zootechnica, Vol. 10, 2007, pp. 8-21.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.