Share This Article:

Analyses of π± - 12C Elastic Scattering and Reaction Cross-Section Data Below, Atop and Above the Δ-Resonance

Abstract Full-Text HTML Download Download as PDF (Size:450KB) PP. 341-352
DOI: 10.4236/jmp.2014.56044    2,673 Downloads   3,365 Views   Citations

ABSTRACT

The pion-nucleus elastic scattering and reaction cross-section data at incident energies below, atop and above the Δ-resonance are analyzed using the full Klein-Gordon equation using an optical potential. Analytic forms of the potential are determined using the inverse scattering theory in those cases where phase shift analyses were available. The Coulomb effect is incorporated using Stricker’s prescription. Both elastic scattering data and the reaction cross sections between 120 and 400 MeV are well reproduced. Both real and imaginary parts of the potential are local. The potential points determined by the inverse scattering theory in the interior region at 230 MeV clearly establish that the real part is repulsive. This remains the case at higher incident energies. The real part turns repulsive above the resonance, whereas the imaginary part reflects the dominance of surface absorption, which is maximum near atop the Δ-resonance and then falling off at higher energies.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Shehadeh, Z. (2014) Analyses of π± - 12C Elastic Scattering and Reaction Cross-Section Data Below, Atop and Above the Δ-Resonance. Journal of Modern Physics, 5, 341-352. doi: 10.4236/jmp.2014.56044.

References

[1] Lee, T.-S.H. and Redwine, R.P. (2002) Annual Review of Nuclear and Particle Science, 52, 23-63.
http://dx.doi.org/10.1146/annurev.nucl.52.050102.090713
[2] Morris, C.L., O’Donnell, J.M. and Zumbro, J.D. (1993) Acta Physica Polonica B, 24, 1659-1671.
[3] Dytman, S.A., Amann, J.F., Barnes, P.D., et al. (1979) Physical Review C, 19, 971-986.
http://dx.doi.org/10.1103/PhysRevC.19.971
[4] Koltun, D.S. (1970) Advances in Nuclear Physics, 3, Academic Press, New York, 71-191.
[5] Ericson, T. and Weise, W. (1988) Pions and Nuclei. Clarendon Press, Oxford.
[6] Kisslinger, L.S. (1955) Physical Review, 98, 761-765.
http://dx.doi.org/10.1103/PhysRev.98.761
[7] Faldt, G. (1972) Physical Review C, 5, 400-412. http://dx.doi.org/10.1103/PhysRevC.5.400
[8] Johnson, M.B. and Satchler, G.R. (1996) Annals of Physics (New York), 248, 134-169.
http://dx.doi.org/10.1006/aphy.1996.0054
[9] Satchler, G. (1992) Nuclear Physical A, 540, 533-576. http://dx.doi.org/10.1103/PhysRevC.62.024603
[10] Khallaf, S.A. and Ebrahim, A.A. (2000) Physical Review C, 62, 024603-1-8.
http://dx.doi.org/10.1103/PhysRevC.62.024603
[11] Ebrahim, A.A. and Khallaf, S.A. (2005) Acta Physica Polonica B, 36, 2071-2085.
http://dx.doi.org/10.1556/APH.25.2006.1.3
[12] Khallaf, S.A. and Ebrahim, A.A. (2006) FIZIKA B, 14, 333-348. http://dx.doi.org/10.1088/0954-3899/27/4/302
[13] Md. Akhter, S., Sultana, H.S.G. and Petersen, R. (2001) Journal of Physics G: Nuclear and Particle Physics, 27, 755-771. http://dx.doi.org/10.1088/0954-3899/27/4/302
[14] Shehadeh, Z.F., Sabra, M. and Malik, F.B. (2003) Condensed Matter Theories, 18, 339-346.
[15] Hooshyar, M.A. and Razavy, M. (1981) Canadian Journal of Physics, 59, 1627-1634.
http://dx.doi.org/10.1139/p81-214
[16] Alam, M.M. (1991) PhD Thesis, Department of Physics, Southern Illinois University, Illinois.
[17] Shehadeh, Z.F. (1995) PhD Thesis, Department of Physics, Southern Illinois University, Illinois.
[18] Shehadeh, Z.F. (2009) International Journal of Modern Physics E, 18, 1615-1627.
http://dx.doi.org/10.1142/S0218301309012823
[19] Shehadeh, Z.F., Scott, J.S. and Malik, F.B. (2011) American Institute of Physics Journal, 1370, 185-191.
http://dx.doi.org/10.1063/1.3638100
[20] Shehadeh, Z.F. (2013) JAAUBAS, 14, 32-37. http://dx.doi.org/10.1016/j.jaubas.2013.03.003
[21] Shehadeh, Z.F. (2013) Turkish Journal of Physics, 37, 190-197. http://dx.doi.org/10.3906/fiz-1207-5
[22] Stricker, K. (1979) PhD Thesis, Department of Physics, Michigan State University, Michigan.
[23] Kim, Y.J., Woo, J.K. and Hoe Cha, M. (2010) Journal of the Korean Physical Society, 56, 1430-1435.
http://dx.doi.org/10.3938/jkps.56.1430
[24] Kahrimanis, G., Burleson, G., Chen, C.M., et al. (1997) Physical Review C, 55, 2533-2540.
http://dx.doi.org/10.1103/PhysRevC.55.2533
[25] Ahmad, I. and Arafah, M.R. (2006) Pramana—Journal of Physics, 66, 1-11.
[26] Hong, S.W. and Kim, B.T. (1999) Journal of Physics G: Nuclear and Particle Physics, 25, 1065-1078.
http://dx.doi.org/10.1088/0954-3899/25/5/310
[27] Dumbrajs, O., Frohlich, J., Klein, U. and Schlaile, H.G. (1984) Physical Review C, 29, 581-591.
http://dx.doi.org/10.1103/PhysRevC.29.581
[28] Harvey, C.J. (1984) PhD Thesis, Department of Physics, the University of Texas at Austin, Texas.
[29] Binon, F., Duteil, P., Garron, J.P., Gorres, J., Hugon, L., Peigneux, J.P., Schmit, C., Spighel, M. and Stroot, J.P. (1970) Nuclear Physics B, 17, 168-188. http://dx.doi.org/10.1016/0550-3213(70)90408-6
[30] Lee, H.K. and McManus, H. (1971) Nuclear Physics A, 167, 257-270. http://dx.doi.org/10.1016/0375-9474(71)90075-3
[31] Safari, R. (2005) Bulgarian Journal of Physics, 32, 292-301.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.