Another possibility of sonoluminescence due to the cherenkov radiation from the ZPF field in a water bubble
Takaaki Musha
.
DOI: 10.4236/ns.2011.33031   PDF    HTML     5,017 Downloads   10,538 Views   Citations

Abstract

Sonoluminescence is the light produced from the collapse of bubbles in water under ultrasound. Schwinger proposed a physical mechanism for sonoluminescence in terms of photon production due to changes of quantum electrodynamic energy contained in a collapsing dielectric bubble. However there are critics for the Schwinger’s proposal that his estimate of the Casimir energy involved is inaccurate and there are several papers to propose its missing term. In this paper, the author presents another possible component of sonoluminescense which is due to Cherenkov radiation from tachyon pairs generated in a collapsing bubble.

Share and Cite:

Musha, T. (2011) Another possibility of sonoluminescence due to the cherenkov radiation from the ZPF field in a water bubble. Natural Science, 3, 249-254. doi: 10.4236/ns.2011.33031.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Putterman, S.J. (1995) Sonoluminescence: Sound into Light. Scientific American, 272, 46-51. doi:10.1038/scientificamerican0295-46
[2] Brenner, M.P. (2002) Single-bubble sonoluminescence. Review of Modern Physics, 74, 425-484. doi:10.1103/RevModPhys.74.425
[3] Barber, B.R., Hiller, R.A., Lofstedt, R., Putterman, S.J. and Wenigner, K.R. (1997) Defining the unknown sonoluminescence. Physics Reports, 281, 65-143. doi:10.1016/S0370-1573(96)00050-6
[4] Schwinger, J. (1992) Casimir energy for dielectrics: spherical geometry, Proceedings of the National Academy of Sciences, USA, 1992, 89, 11118-11120.
[5] Carson, C.E., Molina-Paris, C., Perez-Mercader, J. and Visser, M. (1997) Schwinger’s Dynamical Casimir Effect; Bulk Energy Contribution. Physics Letters B. 395, 76 -81. doi:10.1016/S0370-2693(97)00009-9
[6] Carson, C.E., Molina-Paris, C., Perez-Mercader, J. and Visser, M. (1997) Casimir effect in dielectrics: Bulk Energy Contribution. Physical Review D, 56; 1262-1280. doi:10.1103/PhysRevD.56.1262
[7] Milton, K.A. and Jack Ng, Y. (1997) Casimir energy for a spherical cavity in a dielectric: Applications to sonoluminescence. Physical Review E, 55, 4207-4216. doi:10.1103/PhysRevE.55.4207
[8] Milton, K.A. and Jack Ng, Y. (1998) Observability of the bulk Casimir effect: Can the dynamical Casimir effect be relevant to sonoluminescence? Physical Review E. 57, 5504-5510. doi:10.1103/PhysRevE.57.5504
[9] Eberlein, C. (1996) Sonoliminescence as Quantum Vacuum Radiation, Physical Review Letters, 76, 3842- 3845. doi:10.1103/PhysRevLett.76.3842
[10] Eberlein, C. (1996) Theory of quantum radiation observed as sonoluminescence. Physical Review A, 53, 2772-2787. doi:10.1103/PhysRevA.53.2772
[11] Forward, R.L. (1984) Extracting electrical energy from the vacuum by cohension of charged foliated conductors. Physics Review B, 30, 1700-1702. doi:10.1103/PhysRevB.30.1700
[12] Brevik, I., Marachevsky, V.N. and Milton, K.A. (1999) Identify of the van der Waals Force and the Casimir Effect and the Irrelevance of These Phenomena to Sonoluminescence. Physical Review Letters, 82, 3948-3951. doi:10.1103/PhysRevLett.82.3948
[13] Liberati, S., Visser, M., Belgiornoss, F. and Sciama, D.W. (2000) Sonoluminescence as a QED vacuum effect: Probing Schwinger’s proposal. Journal of Physics A: Mathematical and General, 33, 2251-2272. doi:10.1088/0305-4470/33/11/307
[14] Milton, K.A. (2000) Dimensional and dynamical aspects of the Casimir effect: Understanding the reality and significance of vacuum energy. http://arXiv.org/abs/hep-th/009173
[15] Musha,T. (2005) Superluminal effect for quantum computation that utilizes tunneling photons. Physics Essays, 18, 525-529. doi:10.4006/1.3025765
[16] Musha, T. (2009) Thermal radiation generated inside the Sun due to the cherenkov radiation from ZPF field. Far East Journal of Applied Mathematics, 37, 229-235.
[17] Musha, T. (2001) Cherenkov radiation from faster- than-light photons created in a ZPF background. Journal of Theoretics, 3, 1-7.
[18] Milton, K.A. (1998) Sonoluminescence and the dynamical Casimir effect. The Forth Workshop on Quantum Theory under the Influence of External Conditions, Leipig, 14-18.
[19] Liberati, S., Visser, M., Belgiorus, F. and Sciama, D.W. (1999) Sonoliminescence and the QED vacuum. Proceedings of the Fourth Workshop on Quantum Field Theory under the Influence of External Conditions,World Scientific, Singapore, 1999.
[20] Putterman, S.J. and Weninger, K.R., (2000) Sonoluminescence: How bubbles turn sound into light. The Annual Review of Fluid Mechanics, 32, 445-476.
[21] Hammer, D. and Frommhold, L. (2000) Spectra of sonoluminescent rare-gas bubbles. Physical Review Letters, 85, 1326-1329.
[22] Taleyarkhan. R.P., West, C.D., Cho, J.S., Lahey Jr., R.T., Nigmatulin, R.I. and Block, R.C. (2002) Evidence for nuclear emissions during acoustic cavitation. Science, 295, 1868-1873.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.