Share This Article:

Determination of Hypoxanthine in the Presence of Copper by Adsorptive Stripping Voltammetry

Abstract Full-Text HTML XML Download Download as PDF (Size:1585KB) PP. 291-300
DOI: 10.4236/ajac.2014.55036    4,218 Downloads   6,247 Views   Citations

ABSTRACT

A stripping method for the determination of hypoxanthine in the presence of copper at the submicromolar concentration levels is described. The method is based on controlled adsorptive accumulation of hypoxanthine-copper at the thin-film mercury electrode followed by a fast linear scan voltammetric measurement of the surface species. Optimum experimental conditions were found to be the use of 1.0 × 10﹣3 mol·L﹣1 NaOH solution as electrolyte supporting, an accumulation potential of ﹣0.50 V and a linear scan rate of 200 mV·s﹣1. The response of hypoxanthine-copper is linear over the concentration ranges of 10 - 60 ppb. For an accumulation time of 30 minutes, the detection limit was found to be 250 ppt (1.8 × 10﹣9 mol·L﹣1). Adequate conditions for measuring the hypoxanthine in the presence of metal ions, xanthine, uric acid and other nitrogenated bases were also investigated. The utility of the method is demonstrated by the presence of hypoxanthine associated in ATP or ssDNA.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Farias, P. and Castro, A. (2014) Determination of Hypoxanthine in the Presence of Copper by Adsorptive Stripping Voltammetry. American Journal of Analytical Chemistry, 5, 291-300. doi: 10.4236/ajac.2014.55036.

References

[1] Harkness, R.A. (1988) Hypoxanthine, Xanthine and Uridine in Body-Fluids, Indicators of ATP Depletion. Journal of Chromatography-Biomedical Applications, 429, 255-278.
http://dx.doi.org/10.1016/S0378-4347(00)83873-6
[2] Crushing, D. and Mustafa, S. (1991) Adenosine and Adenosine Nucleotides as Regulators of Cellular Functions. CRC Press, Boca Raton.
[3] Goyal, R.N., Mittal, A. and Sharma, S. (1994) Simultaneous Voltammetric Determination of Hypoxanthine, Xanthine, and Uric-Acid. Electroanalysis, 6, 609-611.
http://dx.doi.org/10.1002/elan.1140060715
[4] Wang, Z.H. and Zhang, H. (2005) An Inlaid Super-Thin Carbon Paste Film Modified Electrode for Simultaneous Determination of Xanthine and Hypoxanthine. Chinese Journal of Analytical Chemistry, 33, 671-674.
[5] Farias, P.A.M., Castro, A.A. and Wagener, A.D.R. (2009) Ultratrace Xanthine Determination in Diluted Alkaline Electrolyte by Adsorptive Stripping Voltammetry at the Mercury Film Electrode. Analytical Letters, 42, 2011-2025.
http://dx.doi.org/10.1080/00032710903082853
[6] Wang, Y. and Tong, L.L. (2010) Electrochemical Sensor for Simultaneous Determination of Uric Acid, Xanthine and Hypoxanthine Based on Poly (bromocresol purple) Modified Glassy Carbon Electrode. Sensors and Actuators B-Chemical, 150, 43-49.
http://dx.doi.org/10.1016/j.snb.2010.07.044
[7] Wang, Y. (2011) Simultaneous Determination of Uric Acid, Xanthine and Hypoxanthine at Poly(pyrocatechol violet)/Functionalized Multi-Walled Carbon Nanotubes Composite Film Modified Electrode. Colloids and Surfaces B-Biointerfaces, 88, 614-621.
http://dx.doi.org/10.1016/j.colsurfb.2011.07.051
[8] Wang, Y., Wang, L., Tian, T., Yao, G.J., Hu, X.Y., Yang, C. and Xu, Q. (2012) A Highly Sensitive and Automated Method for the Determination of Hypoxanthine Based on Lab-on-Valve Approach Using Fe3O4/MWCNTs/beta-CD Modified Electrode. Talanta, 99, 840-845.
http://dx.doi.org/10.1016/j.talanta.2012.07.040
[9] Zhang, F.Y., Wang, Z.H., Zhang, Y.Z., Zheng, Z.X., Wang, C.M., Du, Y.L. and Ye, W.C. (2012) Simultaneous Electrochemical Determination of Uric Acid, Xanthine and Hypoxanthine Based on Poly(L-arginine)/Graphene Composite Film Modified Electrode. Talanta, 93, 320-325.
http://dx.doi.org/10.1016/j.talanta.2012.02.041
[10] Lawal, A.T. and Adeloju, S.B. (2012) Mediated Xanthine Oxidase Potentiometric Biosensors for Hypoxanthine Based on Ferrocene Carboxylic Acid Modified Electrode. Food Chemistry, 135, 2982-2987.
http://dx.doi.org/10.1016/j.foodchem.2012.07.052
[11] Gong, W., Dou, Z.Y., Cui, L.L., Liu, D.J. and He, X.Q. (2012) Electrocatalytic Oxidation and Simultaneous Determination of Uric Acid, Xanthine, Hypoxanthine and Dopamine Based on Beta-Cyclodextrin Modified Glassy Carbon Electrode. Chemical Research in Chinese, 28, 1047-1053.
[12] Ojani, R., Alinezhad, A. and Abedi, Z. (2013) A Highly Sensitive Electrochemical Sensor for Simultaneous Detection of Uric Acid, Xanthine And Hypoxanthine Based on Poly(L-methionine) Modified Glassy Carbon Electrode. Sensors and Actuators B-Chemical, 188, 621-630.
http://dx.doi.org/10.1016/j.snb.2013.07.015
[13] Raj, M.A. and John, S.A. (2013) Simultaneous Determination of Uric Acid, Xanthine, Hypoxanthine and Caffeine in Human Blood Serum and Urine Samples Using Electrochemically Reduced Graphene Oxide Modified Electrode. Analytica Chimica Acta, 771, 14-20.
http://dx.doi.org/10.1016/j.aca.2013.02.017
[14] Torres, A.C., Ghica, M.E. and Brett, C.M.A. (2013) Design of a New Hypoxanthine Biosensor: Xanthine Oxidase Modified Carbon Film and Multi-Walled Carbon Nanotube/Carbon Film Electrodes. Analytical and Bioanalytical Chemistry, 405, 3813-3822.
http://dx.doi.org/10.1007/s00216-012-6631-1
[15] Chen, C.H., Lin, Y.T. and Lin, M.S. (2013) Low-Potential Amperometric Determination of Purine Derivatives through Surface Oxide Regeneration Method. Analytica Chimica Acta, 796, 42-47.
http://dx.doi.org/10.1016/j.aca.2013.08.011
[16] Khajehsharifi, H. and Pourbasheer, E. (2011) Simultaneous Spectrophotometric Determination of Xanthine, Hypoxanthine and Uric Acid in Real Matrix by Orthogonal Signal Correction-Partial Least Squares. Journal of the Iranian Chemical Society, 8, 1113-1119.
[17] Czauderna, M. and Kowalczyk, J. (1997) Simultaneous Measurement of Allantoin, Uric Acid, Xanthine and Hypoxanthine in Blood by High-Performance Liquid Chromatography. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 704, 89-98.
http://dx.doi.org/10.1016/S0378-4347(97)00459-3
[18] Cooper, N., Khosravan, R., Erdmann, C., Fiene, J. and Lee, J.W. (2006) Quantification of Uric Acid, Xanthine and Hypoxanthine in Human Serum by HPLC for Pharmacodynamic Studies. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 837, 1-10.
http://dx.doi.org/10.1016/j.jchromb.2006.02.060
[19] Lin, L., Song, C.Y., Xie, L.Y., Yu, L., Wu, L.M., Zhang, M.L., Yang, S.L., Gao, H.C. and Li, X.K. (2010) Electrochemical Determination of Xanthine and Hypoxanthine in Rat Striatum with an Acetylene Black-Dihexadecyl Hydrogen Phosphate Composite Film Modified Electrode by HPLC coupled with in Vivo Microdialysis. Microchimica Acta, 170, 47-52.
http://dx.doi.org/10.1007/s00604-010-0374-5
[20] Farias, P.A.M., Wagener, A.D.R. and Castro, A.A. (2001) Adsorptive Voltammetric Behavior of Adenine in Presence of Guanine and Some Trace Elements at the Static Mercury Drop Electrode. Analytical Letters, 34, 2125-2140.
http://dx.doi.org/10.1081/AL-100106844
[21] Farias, P.A.M., Wagener, A.D.R. and Castro, A.A. (2001) Adsorptive Voltammetric Behavior of Thymine in Presence of Guanine at the Static Mercury Drop Electrode. Analytical Letters, 34, 1295-1310.
http://dx.doi.org/10.1081/AL-100104154
[22] Farias, P.A.M., Wagener, A.D.R., Junqueira, A.A. and Castro, A.A. (2007) Adsorptive Stripping Voltammetric Behavior of Adenosine Triphosphate (ATP) in Presence of Copper at the Mercury Film Electrode. Analytical Letters, 40, 1779-1790.
http://dx.doi.org/10.1080/00032710701384717
[23] Farias, P.A.M., Castro, A.A., Wagener, A.D.R. and Junqueira, A.A. (2007) DNA Determination in the Presence of Copper in Diluted Alkaline Electrolyte by Adsorptive Stripping Voltammetry at the Mercury Film Electrode. Electro-analysis, 19, 1207-1212.
http://dx.doi.org/10.1002/elan.200703845
[24] Glodowski, S., Bilewicz, R. and Kublik, Z. (1986) Determination of Traces of Purine by Cathodic Stripping Voltammetry at the Hanging Copper Amalgam Drop Electrode. Analytica Chimica Acta, 186, 39-47.
http://dx.doi.org/10.1016/S0003-2670(00)81772-9
[25] Househam, B.C., Van den Berg, C.M.G. and Riley, J.P. (1987) The Determination of Purines in Fresh and Sea-Water by Cathodic Stripping Voltammetry after Complexation with Copper (I). Analytica Chimica Acta, 200, 291-303.
http://dx.doi.org/10.1016/S0003-2670(00)83777-0
[26] Bilewicz, R., Glodowski, S. and Kublik, Z. (1989) The Influence of Adenine on the Electrochemical-Behavior of the Cu(II)/Cu(0) System. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 274, 201-212.
http://dx.doi.org/10.1016/0022-0728(89)87041-X
[27] Correia dos Santos, M.M., Freire Lopes, C.M.L. and Simões Gonçalves, M.L. (1996) Voltammetric Studies of Purine Bases and Purine Nucleosides with Copper. Bioelectrochemistry and Bioenergetics, 39, 55-60.
http://dx.doi.org/10.1016/0302-4598(95)01857-3
[28] Castro, A.A., de Souza, M.V.N., Rey, N.A. and Farias, P.A.M. (2011) Determination of Efavirenz in Diluted Alkaline Electrolyte by Cathodic Adsorptive Stripping Voltammetry at the Mercury Film Electrode. Journal of the Brazilian Society, 22, 1662-1668.
[29] Castro, A.A., Aucelio, R.Q., Rey, N.A., Miguel, E.M. and Farias, P.A.M. (2011) Determination of the Antirretroviral Drug Nevirapine in Diluted Alcaline Electrolyte by Adsorptive Stripping Voltammetry at the Mercury Film Electrode. Combinatorial Chemistry & High Throughput Screening, 14, 22-27.
http://dx.doi.org/10.2174/1386207311107010022
[30] Palecek, E., Jelen, F., Hung, M.A. and Lasovsky, J. (1981) Reaction of the Purine and Pyrimidine-Derivatives with the Electrode Mercury. Bioelectrochemistry and Bioenergetics, 8, 621-631.
http://dx.doi.org/10.1016/0302-4598(81)87005-5

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.