Share This Article:

Extendibility Evaluation of Industrial EUV Source Technologies for kW Average Power and 6.x nm Wavelength Operation

Abstract Full-Text HTML Download Download as PDF (Size:1183KB) PP. 285-295
DOI: 10.4236/jmp.2014.55039    5,904 Downloads   7,219 Views   Citations
Author(s)    Leave a comment

ABSTRACT

Interests in the extendibility are growing after the introduction of the LPP (Laser Produced Plasma) EUV source technology in the semiconductor industry, towards higher average power and shorter wavelength, based on the basic architecture of the established LPP EUV source technology. It is discussed in this article that the power scaling of the 13.5nm wavelength source is essentially possible by a slight increase of the driving laser power, CE (Conversion Efficiency) and EUV collection efficiency by some introduction of novel component technologies. Extension of the EUV wavelength towards BEUV (Beyond EUV), namely 6.x nm is discussed based on the general rule of the UTA (Unresolved Transition Arrays) of high Z ions, and development of multilayer mirrors in this particular wavelength region. Technical difficulties are evaluated for the extension of the LPP source technology by considering the narrower mirror bandwidth and higher melting temperature of the candidate plasma materials. Alternative approach based on the superconducting FEL is evaluated in comparison with the LPP source technology for the future solution.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Endo, A. (2014) Extendibility Evaluation of Industrial EUV Source Technologies for kW Average Power and 6.x nm Wavelength Operation. Journal of Modern Physics, 5, 285-295. doi: 10.4236/jmp.2014.55039.

References

[1] Grillo, G., Pagani, C., Saldin, E.L., Schneidmiller, E.A. and Yurkov, M.V. (2001) Nuclear Instruments and Methods in Physics Research A, 475, 39-42.
[2] Endo, A. (2010) CO2 Laser Produced Tin Plasma Light Source as the Solution for EUV Lithography. In: Wang, M., Ed., Lithography, Chapter 9, InTech. http://www.intechopen.com/
[3] http://www.cymer.com/
[4] http://www.gigaphoton.com/
[5] Fomenkov, I.V., La Fontaine, B., Brown, D., Ahmad, I., Baumgart, P., Bowering, N.R., Brandt, D.C., Bykanov, A.N., De Dea, S., Ershov, A.I., Farrar, N.R., Golich, D.J., Lercel, M.J., Myers, D.W., Rajyaguru, C., et al. (2012) Journal of Micro/Nanolithography, MEMS MOEMS, 11, Article ID: 021110. http://nanolithography.spiedigitallibrary.org/
[6] Otsuka, T., Kilbane, D., Higashiguchi, T., Yugami, N., Yatagai, T., Jiang, W., Endo, A., Dunne, P. and O’Sullivan, G. (2010) Applied Physics Letters, 97, Article ID: 231503. http://dx.doi.org/10.1063/1.3526383
[7] Platonov, Y., et al. (2011) Status of Multilayer Coatings for EUV Lithography. P25, International Workshop on EUVL, EUV Litho Inc. Maui, Hawaii, 13-17 June. https://www.euvlitho.com/
[8] Louis, E., et al. (2011) Multilayer Development for Extreme Ultraviolet and Shorter Wavelength Lithography. S24, International Workshop on EUV and Soft X-Ray Sources, EUV Litho Inc.Dublin, Ireland, 7-10 November.
https://www.euvlitho.com/
[9] Dinger, U., Tuerke, D., Meseck, A., Patra, M., Sohmen, E. and Jankowiak, A. (2012) Concept Study on an Accelerator based Source for 6.x nm Lithography. S16, International Workshop on Extreme Ultraviolet Sources, Dublin, 8-11 October. https://www.euvlitho.com/
[10] Endo, A. (2012) High Average Power Pulsed CO2 Laser for Short Wavelength Light Sources. In: Dumitras, D.C., Ed., CO2 Laser-Optimization and Applications, Chapter 5, InTech. http://www.intechopen.com/
[11] Nowak, K.M., Ohta, T., Suganuma, T., Fujimoto, J., Mizoguchi, H. and Endo, A. (2013) Opto-Electronics Review, 21, 345-354.
[12] Sererova, P., Endo, A., Mocek, T. and Miura, T. (2013) Proceedings of SPIE, 8780, 87800W1-9.
[13] Mizoguchi, H., Nakarai, H., Abe, T., Ohta, T., Nowak, K.M., Kawasuji, Y., Tanaka, H., Watanabe, Y., Hori, T., Kodama, T., Shiraishi, Y., Yanagida, T., Yamada, T., Yamazaki, T., Okazaki, S. and Saitou, T. (2013) LPP-EUV Light Source Development for High Volume Manufacturing Lithography. SPIE Advanced Lithography, paper 8679-9, 24-28 Feb, San Jose, CA, US.
[14] Miura, T., Chyla, M., Smrz, M., Nagisetty, S. S., Severová, P., Novák, O., Endo, A. and Mocek, T. (2013) In-Situ Optical Distortion Measurement of Yb:YAG Thin Disc in High Average Power Regenerative Amplifier. SPIE Photonics West, Lase, 8599-63, 2-7 Feb, San Francisco, CA, US.
[15] Brandt, D.C. and Farrar, N.R. (2009) Solid State Technology, 52, 10. http://electroiq.com/
[16] Wandley, H.N.G., Zou, W., Zhou, X.W., Groves, J.F., Desa, S., Kosut, R., Abrahamson, E., Ghosal, S., Kozak, A.D. and Wang, X. (1999) Materials Research Society Symposium Proceedings, 5380, 323-328.
[17] Ueno, Y., Soumagne, G., Sumitani, A., Endo, A., Higashiguchi, T. and Yagami, N. (2008) Applied Physics Letters, 92, Article ID: 211503. http://dx.doi.org/10.1063/1.2938365
[18] Hashida, M., Sakabe, S. and Izawa, Y. (1996) Physical Review A, 54, 4573-4576.
http://dx.doi.org/10.1103/PhysRevA.54.4573
[19] Banine, V. (2010) Next Generation of EUV Lithography: Challenges and Opportunities. P14, International Workshop on Extreme Ultraviolet Sources, EUV Litho Inc. Dublin, 13-15 November. https://www.euvlitho.com/
[20] Platonov, Y. (2010) Status of EUVL Multilayer Optics Deposition at RIT. P31, International Workshop on Extreme Ultraviolet Sources, EUV Litho Inc. Dublin, 13-15 November. https://www.euvlitho.com/
[21] Makhotkin, I., et al. (2012) Multilayers for 6.8 nm Wavelength. S50, International Workshop on EUV and Soft X-Ray Sources, EUV Litho Inc. Dublin, Ireland, 8-11 October. https://www.euvlitho.com/
[22] Kilbane, D. and O’Sullivan, G. (2010) Physical Review A, 82, Article ID: 062504.
[23] Higashiguchi, T., Otsuka, T., Yugami, N., Jiang, W., Endo, A., Li, B., Kilbane, D., Dunne, P. and O’Sullivan, G. (2011) Applied Physics Letters, 99, Article ID: 191502. http://dx.doi.org/10.1063/1.3660275
[24] Higashiguchi, T., Li, B., Suzuki, Y., Kawasaki, M., Ohashi, H., Torii, S., Nakamura, D., Takahashi, A., Okada, T., Jiang, W.H., Miura, T., Endo, A., Dunne, P., O’Sullivan, G. and Makimura, T. (2013) Optics Express, 21, Article ID: 31837. http://dx.doi.org/10.1364/OE.21.031837
[25] Li, B.W., Otsuka, T., Higashiguchi, T., Yugami, N., Jiang, W.H., Endo, A., Dunne, P. and O’Sullivan, G. (2012) Applied Physics Letters, 101, Article ID: 013112. http://dx.doi.org/10.1063/1.4732791

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.