Theoretical D* Optimization of N+-p Pb1-xSnxSe Long-Wavelength (8 - 11 μm) Photovoltaic Detector at 77 K

Abstract

In this work, the study of the influences of lifetime, doping concentration and absorption layer thickness to resistant- area product (R0A) and quantum efficiency of Pb1-xSnxSe photovoltaic detector are presented. Three fundamental current mechanisms including diffusion, generation-recombination, and tunneling models are considered. Using optimal doping concentration and absorption layer thickness parameters, the calculated detectivity (D*) of Pb1-xSnxSe photovoltaic detector is over 1012 cm Hz1/2/W.

Share and Cite:

B. Weng, J. Qiu, L. Zhao, C. Chang and Z. Shi, "Theoretical D* Optimization of N+-p Pb1-xSnxSe Long-Wavelength (8 - 11 μm) Photovoltaic Detector at 77 K," <i>Detection</i>, Vol. 2 No. 1, 2014, pp. 1-6. doi: 10.4236/detection.2014.21001.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] A. Rogalski, “Infrared Detectors: Status and Trends,” Progress in Quantum Electronics, Vol. 27, No. 2-3, 2003, pp. 59-210. http://dx.doi.org/10.1016/S0079-6727(02)00024-1
[2] A. Rogalski, “Analysis of the R0A Product in n+-p Hg1-xCdxTe Photodiodes,” Infrared Physics, Vol. 28, No. 3, 1988, pp. 139-153. http://dx.doi.org/10.1016/0020-0891(88)90002-4
[3] S. Elizondo, F. Zhao, J. Kar, J. Ma, J. Smart, D. Li, S. Mukherjee and Z. Shi, “Dielectric Charge Screening of Dislocations and Ionized Impurities in PbSe and MCT,” Journal of Electronic Materials, Vol. 37, No. 9, 2008, pp. 1411-1414. http://dx.doi.org/10.1007/s11664-008-0418-3
[4] P. Muller, H. Zogg, A. Fach, J. John, C. Paglino, A. N. Tiwari and M. Krejci, “Reduction of Threading Dislocation Densities in Heavily Lattice Mismatched PbSe on Si(111) by Glide,” Physical Review Letters, Vol. 78, 1997, pp. 3007-3010. http://dx.doi.org/10.1103/PhysRevLett.78.3007
[5] B. Weng, F. Zhao, J. Ma, G. Yu, J. Xu and Z. Shi, “Elimination of Threading Dislocations in As-Grown PbSe Film on Patterned Si(111) Substrate Using Molecular Beam Epitaxy,” Applied Physics Letters, Vol. 96, 2010, Article ID: 251911. http://dx.doi.org/10.1063/1.3457863
[6] H. Zogg, A. Fach, C. Maissen, J. Masek and S. Blunier, “Photovoltaic Lead-Chalcogenide on Silicon Infrared Sensor Arrays,” Optical Engineering, Vol. 33, No. 5, 1994, pp. 1440-1449.
http://dx.doi.org/10.1117/12.165808
[7] O. Ziep, D. Genzow, M. Mocker and K. H. Herrmann, “Nonradiative and Radiative Recombination in lead Chalcogenides,” Physica Status Solidi (b), Vol. 99, No. 1, 1980, pp. 129-138.
http://dx.doi.org/10.1002/pssb.2220990111
[8] A. Rogalski and W. Larkowski, “Comparison of Photodiodes for the 3-5.5 um and 8-14 um Spectral Regions,” Electron Technology, Vol. 18, 1985, pp. 55-69.
[9] P. R. Emtage, “Auger Recombination and Junction Resistance in Lead-Tin Telluride,” Journal of Applied Physics, Vol. 47, 1976, pp. 2565-2568. http://dx.doi.org/10.1063/1.322975
[10] D. Rosenfeld, V. Garber and G. Bahir, “The Effects of Built-in Electric Field on the Performance of Compositionally Graded P-on-n HgCdTeHeterojunction Photodiodes,” Journal of Applied Physics, Vol. 77, 1995, pp. 925- 933. http://dx.doi.org/10.1063/1.359020
[11] A. Rogalski and W. Kaszuba, “Photovoltaic Detectors Pb1-xSnxSe (0
[12] W. W. Anderson, “Tunnel Contribution to Hg1-xCdxTe and Pb1-xSnxTe p-n Junction Diode Characteristics,” Infrared Physics, Vol. 20, No. 6, 1980, pp. 353-361. http://dx.doi.org/10.1016/0020-0891(80)90052-4
[13] T. N. Xu, “Optical Properties of IV-VI Semiconductor Low-Dimensional structures,” Ph.D. Dissertation, Department of Physics, Zhejiang University, Zhejiang, 2008.
[14] D. Rosenfeld, V. Garber and G. Bahir, “The Effect of Built-in Electric Field on the Performance of Compositionally Graded P-on-n HgCdTe Heterojunction Photodiodes,” Journal of Applied Physics, Vol. 77, 1994, pp. 925-933. http://dx.doi.org/10.1063/1.359020
[15] O. Ziep and D. Genzow, “Calculation of the Interband Absorption in Lead Chalcogenides Using a Multiband Model,” Physica Status Solidi (b), Vol. 96, No. 1, 1979, pp. 359-368.
http://dx.doi.org/10.1002/pssb.2220960138
[16] H. Perier, “Recent Advances in Lead-Chalcogenide Diode Lasers,” Applied Physics, Vol. 20, No. 3, 1979, pp. 189- 206. http://dx.doi.org/10.1007/BF00886018
[17] R. Dalven, “A Review of the Semiconductor Properties of PbTe, PbSe, PbS and PbO,” Infrared Physics, Vol. 9, No. 4, 1969, pp. 141-184. http://dx.doi.org/10.1016/0020-0891(69)90022-0
[18] V. Dhar and R. Ashokan, “A Model for Quantum Efficiency and Detectivity of n+p and n+n-p Hg1-xCdxTe Pho- todiodes,” Semiconductor Science and Technology, Vol. 12, No. 5, 1997, pp. 580-588.
http://dx.doi.org/10.1088/0268-1242/12/5/011

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.