Share This Article:

Want to Cure Cancer? Then Revisit the Past; “Warburg Was Correct”, Cancer Is a Metabolic Disease

Abstract Full-Text HTML XML Download Download as PDF (Size:711KB) PP. 297-305
DOI: 10.4236/jct.2014.53036    4,318 Downloads   7,457 Views   Citations

ABSTRACT

I want to make it very clear at the beginning of this communication; this is a controversial opinion review. However, I believe it is time to rethink our approach to cancer research and therapy. Many cancer researchers, especially those involved in cancer genomic research will disagree. I welcome the disagreement and hope it will stimulate an honest debate and dialog between all disciplines of cancer research and treatment. I am convinced that a vast disconnection exists between those involved in basic research and those in the clinical arena that treat this disease. Cancer researchers in all areas should not ignore the role of cancer metabolism in tumorigenesis, progression and metastasis.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Elliott, R. , Jiang, X. and Head, J. (2014) Want to Cure Cancer? Then Revisit the Past; “Warburg Was Correct”, Cancer Is a Metabolic Disease. Journal of Cancer Therapy, 5, 297-305. doi: 10.4236/jct.2014.53036.

References

[1] Seyfried, T.N. and Shelton, L.M. (2010) Cancer as a Metabolic Disease. Nutrition and Metabolism, 7, 1-22. http://dx.doi.org/10.1186/1743-7075-7-7
[2] Seyfried, T.N. (2012) Cancer as a Metabolic Disease (On the Origin, Management, and Prevention of Cancer). Wiley.
[3] Elliott, R.L. and Head, J.F. (2005) Host Immunity Ignored in Clinical Oncology: A Medical Opinion. Cancer Biotherapy and Radiopharmaceuticals, 20, 199-121. http://dx.doi.org/10.1089/cbr.2005. 20.123
[4] Warburg, O., Wind, F. and Negleis, E. (1930) On the Metabolism of Tumors in the Body. In: Warburg, O., Ed., The Metabolism of Tumors, Constable, Princeton, 254-270.
[5] Warburg, O. (1956) On the Origin of Cancer Cells. Science, 123, 309-314.
http://dx.doi.org/10.1126/science.123.3191.309
[6] Hanahan, D. and Weinberg, R.A. (2000) The Hallmarks of Cancer. Cell, 100, 57-70.
http://dx.doi.org/10.1016/S0092-8674(00)81683-9
[7] Seyfried, T.N. and Muckheryee, P. (2005) Targeting Energy Metabolism in Brain Cancer, Review and Hypothesis. Nutrition & Metabolism, 2, 30. http://dx.doi.org/10.1186/1743-7075-2-30
[8] Semenza, G.L., Cartemor, D., Bede, A., Bhujwolla, Z., Chiles, K., Feldser, O., Laughner, E., Pavi, R., Simons, J., Taghavi, P. and Thong, H. (2001) The Metabolism of Tumors: 70 Years Later. The Tumour Microenvironment: Causes and Consequences of Hypoxia and Acidity: Novartis Foundation Symposium 240, 251-260. http://dx.doi.org/10.1002/0470868716.ch17
[9] Ristow, M. (2006) Oxidative Metabolism in Cancer Growth. Current Opinion in Clinical Nutrition and Metabolic Care, 9, 339-345. http://dx.doi.org/10.1097/01.mco.0000232892.43921.98
[10] Gatenby, R.A. and Gillies, F.J. (2004) Why Do Cancers Have High Aerobic Glycolysis. Nature Reviews Cancer, 4, 891-899. http://dx.doi.org/10.1038/nrc1478
[11] Gogvadze, V., Orrenius, S. and Zhivotorsky, B. (2008) Mitochondria in Cancer Cells: What Is So Special about Them? Trends in Cell Biology, 18, 165-173. http://dx.doi.org/10.1016/j.tcb.2008.01.006
[12] Elliott, R.L. and Head, J.F. (2012) Cancer: Tumor from Metabolism, Mitochondrial Dysfunction and Tumor Immunog Suppression; “A Tight Partnership—Was Warburg Correct?” Journal of Cancer Therapy, 3, 278-311. http://dx.doi.org/10.4236/jct.2012.34039
[13] Loeb, L.A. (2001) A Mutator Phenotype in Cancer. Cancer Research, 61, 3230-3239.
[14] Longauer, C., Kingler, K.W. and Vogelstein, B. (1998) Genetic Instabilities in Human Cancers. Nature, 396, 643-649. http://dx.doi.org/10.1038/25292
[15] Wokolorczyk, D., Gliniewicz, B., Sikorski, A., Zlowocka, E., Masojc, B., Defniak, T., Matyjasik, J., Miergejewski, M., Medrek, K., Oszutowska, D., Suchy, J., Gronwald, J., Teodrczyk, U., Juzarski, T., Byrski, T., Jakuborwska, A., Gorski, B., Van de Wetering, T., Walczak, S., Nurod, S.A., Lubrinski, J. and Cybulski, C. (2008) A Range of Cancers Is Associated with the rs 6983267 Marker on Chromosome 8. Cancer Research, 68, 9982-9986. http://dx.doi.org/10.1158/0008-5472.CAN-08-1838
[16] Nowell, P.C. (2002) Tumor Progression: A Brief Historical Perspective. Seminars in Cancer Biology, 12, 261-266. http://dx.doi.org/10.1016/S1044-579X(02)00012-3
[17] Ortega, A.D., Sanchez-Arago, M., Siner-Sanchez, D., Sanchez-Cenizo, L., Willers, I. and Cuezva, J.M. (2009) Glucose Acidity of Carcinomas. Cancer Letters, 276, 125-135. http://dx.doi.org/10.1016/j. canlet.2008.08.007
[18] Attenberg, B. and Greulick, K.O. (2004) Genes of Glycolysis Are Ubiquitously Overexpressed in 24 Cancer Classes. Genomies, 84, 1014-1020. http://dx.doi.org/10.1016/j.ygeno.2004.08.010
[19] Warburg, O. (1969) The Prime Cause of Cancers and Prevention—Part 2. Annual Meeting of Nobelists at Lindau Germany.
[20] Warburg, O. (1931) The Metabolism of Tumor. Richard R. Smith, New York.
[21] Moreno, S., Rodriguez, R., Enriguez, S., Soavedro, E., Masin-Hernandez, A. and Gallardo-Perez, J.C. (2009) The Bioenergetics of Cancer: Is Glycolysis the Main ATP Supplier in All Tumor Cells? Biofactors, 35, 209-225. http://dx.doi.org/10.1002/biof.31
[22] Bonnet, S., Archer, S.L., Allalunis-Turner, J., Hasomy, A., Beculieu, C., Thompson, R., Lee, C.T., Lopasahuk, G.D., Puttagunta, L., Bonnet, S., Harry, G., Hashimoto, K., Porter, C.J., Androcla, M.A., Thebaud, B. and Michelakis, E.D. (2007) A Mitochondria-Rt Channel Axis Is Suppressed in Cancer and Its Normalization Promotes Apoptosis and Inhibits Cancer Growth. Cancer Cell, 11, 37-51. http://dx.doi.org/10.1016/j.ccr.2006.10.020
[23] Semenza, G.L. (2007) HIF-1 Mediates the Warburg Effect in Clear Cell Renal Carcinoma. Journal of Bioenergetics and Biomembranes, 39, 231-234. http://dx.doi.org/10.1007/s10863-007-9081-2
[24] Moreno-Sanchez, R., Rodriguez-Enriquez, S., Morin-Hernandez, A. and Savedra, E. (2007) Energy Metabolism in Tumor Cells. FEBS Journal, 274, 1393-1418. http://dx.doi.org/10.1111/j.1742-4658. 2007.05686.x
[25] Ausinberg, A.C. (1961) The Glycolysis and Respiration of Tumors. Academic Press, New York.
[26] Gantin, V.R. and Leder, P. (2006) Mitochondriotoxic Compounds for Cancer Therapy. Oncogene, 25, 4787-4797. http://dx.doi.org/10.1038/sj.onc.1209599
[27] Hervouet, E., Demont, J., Pecina, P., Vojtiskova, A., Houstek, J., Simonnet, H. and Godinot, C. (2005) A New Role for the Von Hippel-Landau Tumor Suppressor Protein: Stimulation of Mitochondrial Oxidative Phosphorylation Complex Biogenesis. Carcinogenesis, 26, 531-539.
http://dx.doi.org/10.1093/carcin/bgi001
[28] Weinhouse, S. (1956) On Respiratory Impairment in Cancer Cells. Science, 124, 267-269. http://dx.doi.org/10.1126/science.124.3215.267
[29] Weinhouse, S. (1976) The Warburg Hypothesis Fifty Years Later. Zeitschrift für Krebsforschung und Klinische Onkologie, 87, 115-126. http://dx.doi.org/10.1007/BF00284370
[30] Kim, J.W. and Dang, C.V. (2006) Cancer’s Molecular Sweet Tooth and the Warburg Effect. Cancer Research, 66, 8927-8930. http://dx.doi.org/10.1158/0008-5472.CAN-06-1501
[31] Hsu, P.P. and Sabatini, D.M. (2008) Cancer Cell Metabolism: Warburg and Beyond. Cell, 134, 703-707. http://dx.doi.org/10.1016/j.cell.2008.08.021
[32] Shaw, R.J. (2006) Glucose Metabolism and Cancer. Current Opinion in Cell Biology, 18, 598-608. http://dx.doi.org/10.1016/j.ceb.2006.10.005
[33] Jones, R.G. and Thompson, C.B. (2009) Tumor Suppressors and Cell Metabolism: A Recipe for Cancer Growth. Genes & Development, 23, 537-548. http://dx.doi.org/10.1101/gad.1756509
[34] Elliott, R.L., Jiang, X.P. and Head, J.F. (2012) Mitochondrial Organelle Transplantation: Intraduction of Normal Epithelial Mitochondria into Human Cancer Cells Inhibits Proliferation and Increases Drug Sensitivity. Breast Cancer Research and Treatment, 136, 347-354. http://dx.doi.org/10.1007/ s10549-012-2283-2
[35] Sebastian, C., Zwaans, B., Silberman, D.M., Gymsek, M., Gosen, A., Zhong, L., Ram, O., Tudlove, J., Guimaralo, A.R., Toiber, D., Cosentino, C., Greenson, J.K., Macdonald, A.I., MCGlynse, L., Maxwell, F., Edwards, J., Giacosa, S., Guccione, E., Weissleder, R., Bernstein, B.E., Regeu, A., Shiels, P.G., Lombard, D.B. and Mostoslavsky, R. (2012) The Histone Deacetylase SIRT6 Is a Tumor Suppressor that Controls Cancer Metabolism. Cell, 151, 1185-1199. http://dx.doi.org/10.1016/j.cell.2012.10.047
[36] Hershkov, C. (1994) Control of Disease by Selective Iron Depletion: A Novel Therapeutic Strategy Utilizing Iron Chelators. Balliese’s Clinical Hematology, 7, 965-1000. http://dx.doi.org/10.1016/ S0950-3536(05)80133-7
[37] Buss, J.L., Greene, B.T., Turner, J., Torti, F.M. and Torti, S.V. (2004) Iron Chelaters in Cancer Chemotherapy. Current Topics in Medicinal Chemistry, 4, 1623-1635. http://dx.doi.org/10.2174/ 1568026043387269
[38] Andrews, N.C. (2000) Disorders of Iron Metabolism. The New England Journal of Medicine, 342, 1293-1294. http://dx.doi.org/10.1056/NEJM200004273421716
[39] Commack, R., Wrigglesworth, J.M. and Baum, H. (1990) Iron-Dependent Enzymes in Mammalian Systems in Iron Transport and Storage. In: Ponka, P., Schulman, H.M. and Wodworth, R.C., Eds., Iron Transport and Storage, CRC Press, Boca Baton, 17-40.
[40] Thelander, L., Grislund, A. and Thelander, M. (1983) Continued Presence of Oxygen and Iron Required for Mammalian Ribonucleotide Reductase: Possible Regulation Mechanism. Biochemical and Biophysical Research Communications, 110, 859-865. http://dx.doi.org/10.1016/0006-291X(83) 91040-9
[41] Thelander, M., Giaslund, A. and Thelander, L. (1985) Subunit M2 of Mammalian Ribonucleotide Reductase. Journal of Biological Chemistry, 260, 2737-2741.
[42] Trowbridge, I.S., Newman, A., Domingo, D.L. and Salvage, C. (1984) Transferrin Receptors: Structure and Formation. Biochemical Pharmacology, 925-932.
[43] Klausner, R.D., Ashwell, G., Van Renswoude, J., Harford, J.B. and Bridges, K.R. (1983) Binding of Apotransferrin to K562 Cells: Elplanation of the Transferrin Cycle. Proceedings of the National Academy of Sciences of the United States of America, 80, 2263-2266.
http://dx.doi.org/10.1073/pnas.80.8.2263
[44] Richardson, D.R. and Ponka, P. (1997) The Molecular Mechanisms of the Metabolism and Transport of Iron in Normal and Neoplastic Cells. Biochemica et Biophysica Acta, 1331, 1-40.
http://dx.doi.org/10.1016/S0304-4157(96)00014-7
[45] Elliott, R.L., Elliott, M.C., Wang, F. and Head, J.F. (1993) Breast Carcinoma and the Role of Iron Metabolism: A Cytochemical, Tissue Culture and Ultrastructural Study. Annals of the New York Academy of Sciences, 698, 159-166. http://dx.doi.org/10.1111/j.1749-6632.1993.tb17204.x
[46] Elliott, R.L., Stzernholm, R. and Elliott, M.C. (1988) Preliminary Evaluation of Platinumun Transferrin (MPTC-63) a Potential Non-Toxic Treatment for Breast Cancer. Cancer Detection and Prevention, 12, 469-480.
[47] Richardson, D.R., Lane, D.J., Becker, F.M., Huang, M.L., Whitnall, M., Susyo Rahmonto, Y., Sheftel, A.D. and Panka, P. (2010) Mitochondrial Iron Trafficking and the Integration of Iron Metablolis between the Mitochondrial and Cytosol. Proceedings of the National Academy of the Sciences of the United States of America, 107, 10775-10782. http://dx.doi.org/10.1073/pnas.0912925107
[48] Veatch, J.R., McMurray, M.A., Nelson, Z.W. and Gottschling, D.E. (2009) Mitochondrial Dysfunction Leads to Nuclear Genome Instability via an Iron-Sulfer Cluster Defect. Cell, 137, 1247-1258. http://dx.doi.org/10.1016/j.cell.2009.04.014

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.