Share This Article:

Self-Sensing and –Actuating Probes for Tapping Mode AFM Measurements of Soft Polymers at a Wide Range of Temperatures

Abstract Full-Text HTML XML Download Download as PDF (Size:3830KB) PP. 72-78
DOI: 10.4236/jmp.2011.22012    4,844 Downloads   9,729 Views   Citations


Self-sensing and –actuating probes optimized for conventional tapping mode atomic force microscopy (AFM) are described. 32-kHz quartz tuning forks with a chemically etched and focus ion beam (FIB) sharpened (curvature radii are 5-10 nm) tungsten tip are stable at air and liquid nitrogen atmosphere and at a wide range of temperatures. If driven at constant frequency, the scan speed of such sensors can be up to 3 Hz. AFM was performed on polymer samples in order to study the stability and applicability of these sensor for investigation of soft materials with high dynamical tendencies.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

N. Matsko, J. Wagner, A. Efimov, I. Haynl, S. Mitsche, W. Czapek, B. Matsko, W. Grogger and F. Hofer, "Self-Sensing and –Actuating Probes for Tapping Mode AFM Measurements of Soft Polymers at a Wide Range of Temperatures," Journal of Modern Physics, Vol. 2 No. 2, 2011, pp. 72-78. doi: 10.4236/jmp.2011.22012.


[1] G. Binnig, C. F. Quate and C. Gerber, “Atomic Force Microscope,” Physical Review Letters, Vol. 56, No. 9, 1986, pp. 930-933. doi:10.1103/PhysRevLett.56.930
[2] S. Magonov and D. H. Reneker, “Characterization of Polymer Surfaces with Atomic Force Microscopy,” Annual Review of Materials Science, Vol. 27, 1997, pp. 175-222. doi:10.1146/annurev.matsci.27.1.175
[3] F. J. Giessibl, “Atomic Resolution of the Silicon (111)- (7x7) Surface by Atomic Force Microscopy,” Science, Vol. 267, 1995, pp. 68-72. doi:10.1126/science.267.5194.68
[4] J. Rychen, T. Ihn, P. Studerus, A. Herrmann and K. Ensslin, “A Low-Temperature Dynamic Mode Scanning Force Microscope Operating in High Magnetic Fields,” Review of Scientific Instruments, Vol. 70, No. 6, 1999, pp. 2765-2770. doi:10.1063/1.1149842
[5] T. R. Albrecht, P. Gruetter, P.D. Horne and D. J. Rugar, “Frequency Modulation Detection Using High-Q Cantilevers for Enhanced Force Microscope Sensitivity,” Journal of Applied Physics, Vol. 69, No. 2, 1991, pp. 668-673. doi:10.1063/1.347347
[6] H. Hida, M. Shikida, K. Fukuzawa, A. Ono, K. Sato, K. Asaumi, Y. Iriye, D. Cheng and K. Sato, “Fabrication of a Quartz Tuning-Fork Probe with a Sharp Tip for AFM Systems,” Sensors and Actuators A: Physical, Vol. 148, No. 1, 2008, pp. 311-318. doi:10.1016/j.sna.2008.08.021
[7] H. Edwards, L. Taylor, W. Duncan and A. J. Melmed, “Fast, High-Resolution Atomic Force Microscopy Using a Quartz Tuning Fork as Actuator and Sensor,” Journal of Applied Physics, Vol. 82, No. 3, 1997, pp. 980-985. doi:10.1063/1.365936
[8] W. A. Atia and C. C. Davis, “A Phase-Locked Shear-For- ce Microscope for Distance Regulation in Near-Field Optical Microscopy,” Applied Physics Letters, Vol. 70, No. 4, 1997, pp. 405-407. doi:10.1063/1.118318
[9] O.Pfeiffer, R. Bennewitz, A. Baratoff, E. Meyer and E. Gruetter, “Lateral-Force Measurements in Dynamic Force Microscopy,” Physical Review B, Vol. 65, 2002, pp. 161403 (R). doi:10.1103/PhysRevB.65.161403
[10] M. Todorovic, S. J. Schultz, “Miniature High-Sensitivity Quartz Tuning Fork Alternating Gradient Magnetometry,” Journal of Applied Physics, Vol. 83, 1998, pp. 6229- 6231. doi:10.1063/1.367642
[11] F. J. Giessibl, “Atomic Resolution on Si(111)-(7×7) by Noncontact Atomic Force Microscopy with a Force Sensor Based on a Quartz Tuning Fork,” Applied Physics Letters, Vol. 76, 2000, pp. 1470-1473. doi:10.1063/1.126067
[12] L. Zhu, J. Atesang, P. Dudek, M. Hecker, J. Rinderknecht, Y. Ritz, H. Geisler, U. Herr, R. Geer and E. Zschech, “Experimental Challenges for Approaching Local Strain Determination in Silicon by Nano-Raman Spectroscopy,” Materials Science-Poland. Vol. 25, No. 1, 2007, pp. 19- 31. doi:10.1063/1.124780
[13] W. H. J Rensen, N. F. Van Hulst, A. G. T. Ruiter and P. E. West, “Atomic Steps with Tuning-Fork-Based Noncontact Atomic Force Microscopy,” Applied Physics Letters, Vol. 75, No. 11, 1999, pp. 1640-1642.
[14] H. Goettlich, R.W. Stark, J. D. Pedarnig and W. Heckl, “Noncontact Scanning Force Microscopy Based on a Modified Tuning Fork Sensor,” Review of Scientific Instruments, Vol. 71, No. 8, 2000, pp. 3104-3107. doi:10.1063/1.1304881
[15] D. V. Serebriakov, A. P. Cherkun, B. A. Loginov and V. S. Letokhov, “A Scanner for an Ultrahigh-Vacuum Low-Temperature Scanning Tunneling Microscope,”.review of scientific Instruments, 73, 2002, pp. 1795-1801.
[16] L. C. Sawyer and D. T. Grubb, “Polymer Microscopy,” 2nd edition, Chapman & Hall, New York, 1996.
[17] C. Sailer, and U. A. Handge, “Reactive Blending of Polyamide 6 and Styrene?Acrylonitrile Copolymer: Influence of Blend Composition and Compatibilizer Concentration on Morphology and Rheology,” Macromolecules, Vol. 40, No. 6, 2007, pp. 2019-2028. doi:10.1021/ma062705c

comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.