Multi-frequency bioimpedance measurements of rabbit shanks with stress fracture

Abstract

Purpose: The objective of this research is to investigate whether bioimpedance is useful to indicate a shank’s physical condition during training. Methods: Bioimpedance was applied to monitor the condition of 8 rabbits’ shanks in 3 weeks, during which the rabbits were trained for regular excessive jump daily. Nine tibias in 16 developed stress fracture after the 3-week training. Results: According to the analysis of the bioimpedance data, we found that changing pattern of bioimpedance properties of shanks which were more liable to suffer from SF was different from that of shanks which were not during training. Conclusions: This suggests that bioimpedance may be used to monitor the physical condition of a limb, imply its liability to develop stress fracture, and indicate stress fracture during training.

Share and Cite:

Zhang, X. , Luo, E. , Shen, G. , Xie, K. , Song, T. , Wu, X. , Gan, W. and Yan, Y. (2009) Multi-frequency bioimpedance measurements of rabbit shanks with stress fracture. Journal of Biomedical Science and Engineering, 2, 166-172. doi: 10.4236/jbise.2009.23028.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] R. H. Daffner and H. Pavlov, (1992) Stress fractures: current concepts, AJR Am J Roentgenol, 159(2), 245-252.
[2] R. H. Daffner and H. Pavlov, (1992) Stress fractures: current concepts, AJR Am J Roentgenol, 159(2), 245-252.
[3] R. L. Pentecost, R. A. Murray, and H. H. Bridley, (1964) Fatigue, insufficiency, and pathologic fractures, JAMA, 28(187), 1001- 1004.
[4] M. Giladi, C. Milgrom, A. Simkin, and Y. Danon, (1991) Stress fractures: Identifiable risk factors, Am J Sports Med, 19(6), 647-652.
[5] M. J. Kiuru, H. K. Pihlajamaki, and J. A. Ahovuo, (2004) Bone stress injuries, Acta Radiol, 45(3), 317-326.
[6] M. Murcia, M. D., R. E. Brennan, M. D., and J. Edeiken, M. D., (1982) Computed tomography of stress fracture, Skeletal Radiol, 8, 193-195.
[7] A. D. Perron, W. J. Brady, T. A. Keats, (2001) Principles of stress fracture management: The whys and hows of an increasingly common injury, Postgrad Med, 110(3), 115-8, 123-4.
[8] M. T. Reeder, B. H. Dick, J. K. Atkins, A. B. Pribis, J. M. Martinez, (1996) Stress fractures: current concepts of diagnosis and treatment, Sports Med, 22(3), 198-212.
[9] L. M. Fayad, S. Kawamoto, I. R. Kamel, D. A. Bluemke, J. Eng, F. J. Frassica, and E. K. Fishman, (2005) Distinction of long bone stress fractures from pathologic fractures on cross-sectional imaging: How successful are we? AJR Am J Roentgenol, 185(4), 915-924.
[10] A. Feydy, J. Drapé, E. Beret, L. Sarazin, E. Pessis, A. Minoui, A. Chevrot, (1998) Longitudinal stress fractures of the tibia: Comparative study of CT and MR imaging, Eur Radio, 8(4), 598-602.
[11] M. Gaeta, F. Minutoli, E. Scribano, G. Ascenti, S. Vinci, D. Bruschetta, L. Magaudda, A. Blandino, (2005) CT and MR imaging findings in athletes with early tibial stress injuries: comparison with bone scintigraphy findings and emphasis on cortical abnormalities, Radiology, 235(2), 553-561.
[12] I. Elias, A. C. Zoga, S. M. Raikin, J. R. Peterson, M. P. Besser, W. B. Morrison, and M. E. Schweitzer, (2008) Bone stress injury of the ankle in professional ballet dancers seen on MRI, BMC Musculoskelet Disord, 9(1), 39, Published online, March 28, 2008.
[13] M. W. Anderson and A. Greenspan, (1996) Stress fractures, Radiology, 199(1), 1-12.
[14] A. Fottner and C. Birkenmaier, (2008) Stress fractures presenting as tumours: A retrospective analysis of 22 cases: Reply to Agarwal and Gulati, Int Orthop, Published online, August 6, 2008.
[15] D. Pauleit, T. Sommer, J. Textor, S. Flacke, C. Hasan, K. Steuer, D. Emous, and H. Schild, (1999) MRI diagnosis in longitudinal stress fractures: Differential diagnosis of Ewing sarcoma, Rofo, 170(1), 28-34.
[16] S. T. Zwas, R. Elkanovitch, and G. Frank, (1987) Interpretation and classification of bone scintigraphic findings in stress fractures, J Nucl Med, 28(4), 452-457.
[17] A. Thomasset, (1962) Bioelectrical properties of tissue impedance, Lyon Medical, 207, 107-118.
[18] J. R. Bourne (ed.), J. -P. Morucci, M. E. Valentinuzzi, B. Rigaud, C. J. Felice, N. Chauveau, and P. M. Marsili, (1996) Bioelectrical impedance techniques in medicine, Critical Reviews in Biomedical Engineering, 24(4-6).
[19] H. P. Schwan, (1957) Electrical properties of tissue and cell suspensions, Adv Biol Med Phys, 5, 147-209. B. Rigaud, L. Hamzaoui, N. Chauveau, M. Granie, J. -P. Scotto D. Rinaldi, and J. -P. Morucci, (1994) Tissue characterization by impedance: a multifrequency approach, Physiol Meas, 15, A13- A20.
[20] K. S. Cole, (1940) Permeability and impermeability of cell membranes for ions, Cold Spring Harbor Symp Quant Biol, 8, 110-122.
[21] E. T. Mcadams and J. Jossinet, (1996) Problems in equivalent circuit modelling of the electrical properties of biological tissues, Bioelectrochem, Bioenergetics, 40, 147-152.
[22] S. J. Warden, D. B. Burr, and P. D. Brukner, (2006) Stress fractures: Pathophysiology, epidemiology, and risk factors, Current Osteoporosis Reports, Published online, March 26, 2008.
[23] A. Ivkovi?, M. Frani?, I. Bojani?, and M. Pe?ina, (2007) Overuse injuries in female athletes, Croat Med J, 48(6), 767-778.
[24] T. J. C. Faes, H. A. van der Meij, J. C. de Munck, and R. M. Heethaar, (1999) The electric resistivity of human tissues (100Hz–10MHz): A meta-analysis of review studies, Physiol Meas, 20, R1-R10.
[25] R. L. Pentecost, R. A. Murray, and H. H. Bridley, (1964) Fatigue, insufficiency, and pathologic fractures, JAMA, 28(187), 1001- 1004.
[26] M. Giladi, C. Milgrom, A. Simkin, and Y. Danon, (1991) Stress fractures: Identifiable risk factors, Am J Sports Med, 19(6), 647-652.
[27] M. J. Kiuru, H. K. Pihlajamaki, and J. A. Ahovuo, (2004) Bone stress injuries, Acta Radiol, 45(3), 317-326.
[28] M. Murcia, M. D., R. E. Brennan, M. D., and J. Edeiken, M. D., (1982) Computed tomography of stress fracture, Skeletal Radiol, 8, 193-195.
[29] A. D. Perron, W. J. Brady, T. A. Keats, (2001) Principles of stress fracture management: The whys and hows of an increasingly common injury, Postgrad Med, 110(3), 115-8, 123-4.
[30] M. T. Reeder, B. H. Dick, J. K. Atkins, A. B. Pribis, J. M. Martinez, (1996) Stress fractures: current concepts of diagnosis and treatment, Sports Med, 22(3), 198-212.
[31] L. M. Fayad, S. Kawamoto, I. R. Kamel, D. A. Bluemke, J. Eng, F. J. Frassica, and E. K. Fishman, (2005) Distinction of long bone stress fractures from pathologic fractures on cross-sectional imaging: How successful are we? AJR Am J Roentgenol, 185(4), 915-924.
[32] A. Feydy, J. Drapé, E. Beret, L. Sarazin, E. Pessis, A. Minoui, A. Chevrot, (1998) Longitudinal stress fractures of the tibia: Comparative study of CT and MR imaging, Eur Radio, 8(4), 598-602.
[33] M. Gaeta, F. Minutoli, E. Scribano, G. Ascenti, S. Vinci, D. Bruschetta, L. Magaudda, A. Blandino, (2005) CT and MR imaging findings in athletes with early tibial stress injuries: comparison with bone scintigraphy findings and emphasis on cortical abnormalities, Radiology, 235(2), 553-561.
[34] I. Elias, A. C. Zoga, S. M. Raikin, J. R. Peterson, M. P. Besser, W. B. Morrison, and M. E. Schweitzer, (2008) Bone stress injury of the ankle in professional ballet dancers seen on MRI, BMC Musculoskelet Disord, 9(1), 39, Published online, March 28, 2008.
[35] M. W. Anderson and A. Greenspan, (1996) Stress fractures, Radiology, 199(1), 1-12.
[36] A. Fottner and C. Birkenmaier, (2008) Stress fractures presenting as tumours: A retrospective analysis of 22 cases: Reply to Agarwal and Gulati, Int Orthop, Published online, August 6, 2008.
[37] D. Pauleit, T. Sommer, J. Textor, S. Flacke, C. Hasan, K. Steuer, D. Emous, and H. Schild, (1999) MRI diagnosis in longitudinal stress fractures: Differential diagnosis of Ewing sarcoma, Rofo, 170(1), 28-34.
[38] S. T. Zwas, R. Elkanovitch, and G. Frank, (1987) Interpretation and classification of bone scintigraphic findings in stress fractures, J Nucl Med, 28(4), 452-457.
[39] A. Thomasset, (1962) Bioelectrical properties of tissue impedance, Lyon Medical, 207, 107-118.
[40] J. R. Bourne (ed.), J. -P. Morucci, M. E. Valentinuzzi, B. Rigaud, C. J. Felice, N. Chauveau, and P. M. Marsili, (1996) Bioelectrical impedance techniques in medicine, Critical Reviews in Biomedical Engineering, 24(4-6).
[41] H. P. Schwan, (1957) Electrical properties of tissue and cell suspensions, Adv Biol Med Phys, 5, 147-209.
[42] B. Rigaud, L. Hamzaoui, N. Chauveau, M. Granie, J. -P. Scotto D. Rinaldi, and J. -P. Morucci, (1994) Tissue characterization by impedance: a multifrequency approach, Physiol Meas, 15, A13- A20.
[43] K. S. Cole, (1940) Permeability and impermeability of cell membranes for ions, Cold Spring Harbor Symp Quant Biol, 8, 110-122.
[44] E. T. Mcadams and J. Jossinet, (1996) Problems in equivalent circuit modelling of the electrical properties of biological tissues, Bioelectrochem, Bioenergetics, 40, 147-152.
[45] S. J. Warden, D. B. Burr, and P. D. Brukner, (2006) Stress fractures: Pathophysiology, epidemiology, and risk factors, Current Osteoporosis Reports, Published online, March 26, 2008.
[46] A. Ivkovi?, M. Frani?, I. Bojani?, and M. Pe?ina, (2007) Overuse injuries in female athletes, Croat Med J, 48(6), 767-778.
[47] T. J. C. Faes, H. A. van der Meij, J. C. de Munck, and R. M. Heethaar, (1999) The electric resistivity of human tissues (100Hz–10MHz): A meta-analysis of review studies, Physiol Meas, 20, R1-R10.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.