Share This Article:

Spectral Modifications of Graphene Using Molecular Dynamics Simulations

Abstract Full-Text HTML XML Download Download as PDF (Size:850KB) PP. 149-156
DOI: 10.4236/jmp.2014.54025    3,188 Downloads   5,213 Views   Citations

ABSTRACT

We investigated graphene structures grafted with fullerenes. The size of the graphene sheets ranges from 6400 to 640,000 atoms. The fullerenes (C60 and C240) are placed on top of the graphene sheets, using different impact velocities we could distinguish three types of impact. Furthermore, we investigated the changes of the vibrational properties. The modified graphene planes show additional features in the vibronic density of states.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Liesegang, D. and Oligschleger, C. (2014) Spectral Modifications of Graphene Using Molecular Dynamics Simulations. Journal of Modern Physics, 5, 149-156. doi: 10.4236/jmp.2014.54025.

References

[1] K. S. Novoselov, et al., Science, Vol. 306, 2004, pp. 666-669. http://dx.doi.org/10.1126/science.1102896
[2] D. C. Elias, et al., Science, Vol. 323, 2009, pp. 610-613.
http://dx.doi.org/10.1126/science.1167130
[3] J.-C. Charlier, P. C. Eklund, J. Zhu and A. C. Ferrari, “Electron an Phonon Properties of Graphene: Their Relationshop with Carbon Nanotubes,” In: A. Jorio, G. Dresselhaus and M. S. Dresselhaus, Eds., Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications, Springer-Verlag, Berlin, 2008.
http://dx.doi.org/10.1007/978-3-540-72865-8_21
[4] K. S. Novoselov, et al., Nature, Vol. 438, 2005, pp. 197-200. http://dx.doi.org/10.1038/nature04233
[5] S. V. Mozorov, et al., Physical Review Letters, Vol. 100, 2008, Article ID: 016602.
http://dx.doi.org/10.1103/PhysRevLett.100.016602
[6] J. H. Chen, C. Jang, S. Xiao, M. Ishigami and M. S. Fuhrer, Nature Nanotechnology, Vol. 3, 2008, pp. 206-209. http://dx.doi.org/10.1038/nnano.2008.58
[7] A. Akturk and N. Goldsman, Journal of Applied Physics, Vol. 103, 2008, Article ID: 053702.
http://dx.doi.org/10.1063/1.2890147
[8] S. M. Lindsay, “Introduction to Nanoscience,” Oxford University Press, New York, 2010.
[9] Y. Zhang, et al., Nature, Vol. 459, 2009, pp. 820-823.
http://dx.doi.org/10.1038/nature08105
[10] R. R. Nair, et al., Science, Vol. 320, 2008, p. 1308.
http://dx.doi.org/10.1126/science.1156965
[11] A. A. Balandin, et al., Nano Letters, Vol. 8, 2008, pp. 902-907. http://dx.doi.org/10.1021/nl0731872
[12] D. Yu, K. Park, M. Durstock and L. Dai, Journal of Physical Chemistry Letters, Vol. 2, 2011, pp. 1113-1118.
http://dx.doi.org/10.1021/jz200428y
[13] Y. Zhang, L. Ren, S. Wang, A. Marathe, J. Chaudhuri and G. Li, Journal of Material Chemistry, Vol. 21, 2011, pp. 5386-5391. http://dx.doi.org/10.1039/c1jm10257e
[14] P. Hansen and I. R. McDonald, “Theory of Simple Liquids,” Academic, New York, 1976.
[15] G. Cicotti, D. Frenkel and I. R. McDonald, “Simulations of Liquids and Solids,” North Holland, Amsterdam, 1987.
[16] M. P. Allen and D. J. Tildesley, “Computer Simulation of Liquids,” Clarendon, Oxford, 1987.
[17] B. J. Garrison, Chemical Society Reviews, Vol. 21, 1992, pp. 155-162. http://dx.doi.org/10.1039/cs9922100155
[18] L. Ding, C. Gung, Y. Zhao, X. He and H. Wen, Science in China Series B: Chemistry, Vol. 51, 2008, pp. 651-660.
[19] A. Schüring, J. Gulín-González, S. Fritzsche, J. Karger and S. Vasenkov, Diffusion Fundamentals, Vol. 6, 2007, pp. 33.1-33.2.
http://www.uni-leipzig.de/~diff/pdf/volume6/diff_fund_6(2007)33.pdf
[20] A. Ito and H. Nakamura, Communication in Computational Physics, Vol. 4, 2008, pp. 592-610.
http://www.global-sci.com/
[21] P. Valentini and T. Dumitrica, Journal of Nano Research, Vol. 1, 2008, pp. 31-39. http://www.scientific.net/jnanor
http://dx.doi.org/10.4028/www.scientific.net/JNanoR.1.31
[22] A. Brinkmann, et al., Physica B, Vol. 406, 2011, pp. 2931-2947. http://dx.doi.org/10.1016/j.physb.2011.02.074
[23] R. L. Davidchack and B. B. Laird, Molecular Physics, Vol. 97, 1999, pp. 833-839.
http://dx.doi.org/10.1080/00268979909482884
[24] R. L. Davidchack and B. B. Laird, Physical Review Letters, Vol. 85, 2000, pp. 4751-4754.
http://dx.doi.org/10.1103/PhysRevLett.85.4751
[25] M. Amini and B. B. Laird, Physical Review Letters, Vol. 97, 21, 2006, Article ID: 216102.
http://dx.doi.org/10.1103/PhysRevLett.97.216102
[26] D. W. Brenner, Physical Review B, Vol. 42, 1990, pp. 9458-9471. http://dx.doi.org/10.1103/PhysRevB.42.9458
[27] D. Beeman and R. Alben, Advances in Physics, Vol. 26, 1977, pp. 339-361.
http://dx.doi.org/10.1080/00018737700101403
[28] C. Oligschleger and J. C. Schon, Journal of Physics: Condensed Matter, Vol. 9, 1997, pp. 1049-1066.
http://dx.doi.org/10.1088/0953-8984/9/5/011
[29] C. Oligschleger, et al., Journal of Physics: Condensed Matter, Vol. 21, 2009, Article ID: 405402.
http://dx.doi.org/10.1088/0953-8984/21/40/405402

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.