Share This Article:

Macroscopic Quantum Behaviour of Periodic Quantum Systems

Abstract Full-Text HTML XML Download Download as PDF (Size:568KB) PP. 44-50
DOI: 10.4236/jmp.2014.51007    3,881 Downloads   5,134 Views   Citations

ABSTRACT

In this paper we introduce a simple procedure for computing the macroscopic quantum behaviour of periodic quantum systems in the high energy regime. The macroscopic quantum coherence is ascribed to a one-particle state, not to a condensate of a many-particle system; and we are referring to a system of high energy but with few degrees of freedom. We show that, in the first order of approximation, the quantum probability distributions converge to its classical counterparts in a clear fashion, and that the interference effects are strongly suppressed. The harmonic oscillator provides a testing ground for these ideas and yields excellent results.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

A. Martín-Ruiz, J. Bernal and A. Carbajal-Domínguez, "Macroscopic Quantum Behaviour of Periodic Quantum Systems," Journal of Modern Physics, Vol. 5 No. 1, 2014, pp. 44-50. doi: 10.4236/jmp.2014.51007.

References

[1] M. Schlosshauer, “Decoherence and the Quantum-to-Classical Transition,” Springer, Berlin/Heidelberg, 2007.
[2] S. Haroche and J.-M. Raimond, “Exploring the Quantum. Atoms, Cavities, and Photons,” Oxford University Press, New York, 2006.
[3] E. Joos and H. D. Zeh, Zeitschrift für Physik B Condensed Matter, Vol. 59, 1985, pp. 223-243.
Uhttp://dx.doi.org/10.1007/BF01725541U
[4] W. H. Zurek, Physics Today, Vol. 44, 1991, pp. 36-44.
Uhttp://dx.doi.org/10.1063/1.881293U
[5] W. H. Zurek, Reviews of Modern Physics, Vol. 75, 2003, pp. 715-775.
Uhttp://dx.doi.org/10.1103/RevModPhys.75.715U
[6] D. Giulini, E. Joos, C. Kiefer, J. Kupsch, I. O. Stamatescu and H. D. Zeh, “Decoherence and the Appearance of the Classical World in Quantum Theory,” Springer, Berlin, 1996. Uhttp://dx.doi.org/10.1007/978-3-662-03263-3U
[7] G. G. Cabrera and M. Kiwi, Physical Review A, Vol. 36, 1987, pp. 2995-2998.
Uhttp://dx.doi.org/10.1103/PhysRevA.36.2995U
[8] R. Liboff, “Introductory Quantum Mechanics,” 4th Edition, Addison-Wesley, Boston, 2002.
[9] L. de la Pena, “Introducción a la Mecánica Cuántica,” FCE, UNAM, México, 2006.
[10] G. Yoder, American Journal of Physics, Vol. 74, 2006, p. 404. Uhttp://dx.doi.org/10.1119/1.2173280U
[11] R. W. Robinett, American Journal of Physics, Vol. 63, 1995, pp. 823-832.
Uhttp://dx.doi.org/10.1119/1.17807U
[12] J. Bernal, A. Martín-Ruiz and J. García-Melgarejo, Journal of Modern Physics, Vol. 4, 2013, pp. 108-112.
[13] A. Martín-Ruiz, J. Bernal, A. Frank and A. Carbajal-Dominguez, Journal of Modern Physics, Vol. 4, 2013, pp. 818-822.
[14] J. von Neumann, “Mathematical Foundations of Quantum Mechanics (1932),” Translated by R. T. Beyer Princeton, University Press, Princeton, 1955.
[15] S. D. Lindenbaum, “Lecture Notes on Quantum Mechanics,” World Scientific Pub Co Inc., Singapore, 1999.
[16] H. Goldstein, C. P. Poole and J. P. Safko, “Classical Mechanics,” Addison-Wesley, San Francisco, 2002.
[17] M. Abramowitz and I. Stegun, “Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables,” Dover Publications, New York, 1965.
[18] I. S. Gradshteyn and I. M. Ryzhik, “Table of Integrals, Series, and Products,” Edited by A. Jeffrey and D. Zwillinger, 4th Edition, Academic Press, New York, 1994.
[19] G. Szego, “Orthogonal Polynomials,” American Mathematical Society, Providence, 1939.
[20] A. Erdélyi, “Tables of Integral Transforms 1,” McGraw-Hill, New York, 1954.
[21] D. Kammler, “A First Course in Fourier Analysis,” Prentice Hall, Upper Saddle River, 2000.
[22] L. E. Ballentine, “Quantum Mechanics: A Modern Development,” World Scientific, New York, 1998.
Uhttp://dx.doi.org/10.1142/3142U

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.