Alloyed CdTe0.6S0.4 Quantum Dots Sensitized TiO2 Electrodes for Photovoltaic Applications

Abstract

The photovoltaic performance of alloyed CdTe0.6S0.4 quantum dot sensitized solar cells (QDSSCs) is investigated. Fluorine doped Tin Oxide (FTO) substrates were coated with 20 nm-diameter TiO2 nanoparticles (NPs). Presynthesized colloidal solution of alloyed CdTe0.6S0.4 quantum dots (QDs) of 4.2 nm was deposited onto TiO2 NPs substrates using direct adsorption (DA) technique, by dipping for different times at ambient conditions. The FTO counter electrodes were coated with platinum, while the electrolyte containing I-/I-3 redox species was sandwiched between the two electrodes. Compared to pure CdTe QDs and CdS QDs, CdTe0.6S0.4 QDs showed better photovoltaic performance. The J-V characteristic curves of the assembled QDSSCs were measured at AM 1.5 simulated sunlight. The short current density (Jsc) and efficiency (η) increase with dipping time. At 24 h dipping time, the open-circuit photovoltage Voc, Jsc, fill factor (FF), and η were 0.46 volts, 1.54 mA/cm2, 0.43% and 0.31%, respectively.

Share and Cite:

A. Badawi, K. Easawi, N. Al-Hosiny and S. Abdallah, "Alloyed CdTe0.6S0.4 Quantum Dots Sensitized TiO2 Electrodes for Photovoltaic Applications," Materials Sciences and Applications, Vol. 5 No. 1, 2014, pp. 27-32. doi: 10.4236/msa.2014.51004.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] N. Al-Hosiny, A. Badawi, M. A. A. Moussa, R. El-Agmy and S. Abdallah, “Characterization of Optical and Thermal Properties of CdSe Quantum Dots Using Photoacoustic Technique,” International Journal of Nanoparticles, Vol. 5, No. 3, 2012, pp. 258-266.
http://dx.doi.org/10.1504/IJNP.2012.048022
[2] S. Baskoutas and A. F. Terzis, “Size Dependent Exciton Energy of Various Technologically Important Colloidal Quantum Dots,” Materials Science and Engineering: B, Vol. 147, No. 2-3, 2008, pp. 280-283.
http://dx.doi.org/10.1016/j.mseb.2007.09.041
[3] J. Jiao, Z.-J. Zhou, W.-H. Zhou and S.-X. Wu, “CdS and PbS Quantum Dots co-Sensitized TiO2 Nanorod Arrays with Improved Performance for Solar Cells Application,” Materials Science in Semiconductor Processing, Vol. 16, No. 2, 2013, pp. 435-440.
http://dx.doi.org/10.1016/j.mssp.2012.08.009
[4] A. Badawi, N. Al-Hosiny, S. Abdallah, S. Negm and H. Talaat, “Tuning Photocurrent Response through Size Control of CdTe Quantum Dots Sensitized Solar Cells,” Solar Energy, Vol. 88, 2013, pp. 137-143.
[5] S. Neeleshwar, C. L. Chen, C. B. Tsai, Y. Y. Chen, C. C. Chen, S. G. Shyu and M. S. Seehra, “Size-Dependent Properties of CdSe Quantum Dots,” Physical Review B, Vol. 71, 2005, Article ID: 201307(R).
[6] P. K. Khanna and N. Singh, “Light Emitting CdS Quantum Dots in PMMA: Synthesis and Optical Studies,” Journal of Luminescence, Vol. 127, 2007, pp. 474-482.
[7] D. Patidar, K. S. Rathore, N. S. Saxena, K. Sharma and T. P. Sharma, “Energy Band Gap and Conductivity Measurments of CdSe Thin Films,” Chalcogenide Letters, Vol. 5, No. 2, 2008, pp. 21-25.
[8] A. Badawi, N. Al-Hosiny, S. Abdallah, S. Negm and H. Talaat, “Photoacoustic Study of Optical and Thermal Properties of CdTe Quantum Dots,” Journal of Materials Science and Engineering A, Vol. 2, No. 1, 2012, pp. 1-6.
[9] J. Zhao, J. Wu, F. Yu, X. Zhang, Z. Lan and J. Lin, “Improving the Photovoltaic Performance of Cadmium Sulfide Quantum Dots-Sensitized Solar Cell by Graphene/ Titania Photoanode,” Electrochimica Acta, Vol. 96, 2013, pp. 110-116.
http://dx.doi.org/10.1016/j.electacta.2013.02.067
[10] X. Wang, J. Zheng, X. Sui, H. Xie, B. Liu and X. Zhao, “CdS Quantum Dots Sensitized Solar Cells Based on Free-Standing and Through-Hole TiO2 Nanotube Arrays,” Dalton Transactions, Vol. 42, No. 41, 2013, pp. 14726-14732. http://dx.doi.org/10.1039/c3dt51266e
[11] Y. Wang, Y. Hou, A. Tang, B. Feng, Y. Li, J. Liu and F. Teng, “Synthesis and Optical Properties of CompositionTunable and Water-Soluble ZnxCd1-xTe Alloyed Nanocrystals,” Journal of Crystal Growth, Vol. 308, 2007, pp. 19-25.
[12] R. E. Bailey and S. Nie, “Alloyed Semiconductor Quantum Dots: Tuning the Optical Properties without Changing the Particle Size,” Journal of the American Chemical Society, Vol. 125, No. 23, 2003, pp. 7100-7106.
[13] N. P. Gurusinghe, N. N. Hewa-Kasakarage and M. Zamkov, “Composition-Tunable Properties of CdSxTe1-x Alloy Nanocrystals,” The Journal of Physical Chemistry C, Vol. 112, No. 33, 2008, pp. 12795-12800.
[14] L. A. Swafford, L. A. Weigand, M. J. B. II, J. R. McBride, J. L. Rapaport, T. L. Watt, S. K. Dixit, L. C. Feldman and S. J. Rosenthal, “Homogeneously Alloyed CdSxSe1-x Nanocrystals: Synthesis, Characterization, and Composition/Size-Dependent Band Gap,” Journal of the American Chemical Society, Vol. 128, No. 37, 2006, pp. 1229912306. http://dx.doi.org/10.1021/ja063939e
[15] P. V. Kamat, “Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters,” The Journal of Physical Chemistry C, Vol. 112, No. 48, 2008, pp. 18737-18753. http://dx.doi.org/10.1021/jp806791s
[16] S. Abdallah, N. Al-Hosiny and A. Badawi, “Photoacoustic Study of CdS QDs for Application in Quantum-DotSensitized Solar Cells,” Journal of Nanomaterials, Vol. 2012, 2012, p. 6.
[17] C.-W. Peng and Y. Li, “Application of Quantum DotsBased Biotechnology in Cancer Diagnosis: Current Status and Future Perspectives,” Journal of Nanomaterials, 2010, Article ID: 676839.
[18] Y. Xie, S. H. Yoo, C. Chen and S. O. Cho, “Ag2S Quantum Dots-Sensitized TiO2 Nanotube Array Photoelectrodes,” Materials Science and Engineering: B, Vol. 177, No. 1, 2012, pp. 106-111.
http://dx.doi.org/10.1016/j.mseb.2011.09.021
[19] K. Tvrdy, P. A. Frantsuzov and P. V. Kamat, “Photoinduced Electron Transfer from Semiconductor Quantum Dots to Metal Oxide Nanoparticles,” PNAS, Vol. 108, No. 1, 2011, pp. 29-34.
http://dx.doi.org/10.1073/pnas.1011972107
[20] S. J. Ikhmayies and R. N. Ahmad-Bitar, “Characterization of the SnO2:F/CdS:In Structures Prepared by the Spray Pyrolysis Technique,” Solar Energy Materials and Solar Cells, Vol. 94, No. 5, 2010, pp. 878-883.
http://dx.doi.org/10.1016/j.solmat.2010.01.011
[21] S. Ruhle, M. Shalom and A. Zaban, “Quantum-Dot-Sensitized Solar Cells,” ChemPhysChem, Vol. 11, 2010, pp. 2290-2304.
[22] A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno and P. V. Kamat, “Quantum Dot Solar Cells. Tuning Photoresponse through Size and Shape Control of CdSe-TiO2 Architecture,” Journal of the American Chemical Society, Vol. 130, No. 12, 2008, pp. 4007-4015.
[23] A. Salant, M. Shalom, I. Hod, A. Faust, A. Zaban and U. Banin, “Quantum Dot Sensitized Solar Cells with Improved Efficiency Prepared Using Electrophoretic Deposition,” ACS NANO, Vol. 4, No. 10, 2010, pp. 5962-5968.
http://dx.doi.org/10.1021/nn1018208
[24] N. Guijarro, T. Lana-Villarreal, I. Mora-Sero′, J. Bisquert and R. Go′mez, “CdSe Quantum Dot-Sensitized TiO2 Electrodes: Effect of Quantum Dot Coverage and Mode of Attachment,” The Journal of Physical Chemistry C, Vol. 113, No. 10, 2009, pp. 4208-4214.
[25] J. H. Bang and P. V. Kamat, “Quantum Dot Sensitized Solar Cells. A Tale of Two Semiconductor Nanocrystals: CdSe and CdTe,” ACS NANO, Vol. 3, No. 6, 2009, pp. 1467-1476.
[26] D. R. Pernik, K. Tvrdy, J. G. Radich and P. V. Kamat, “Tracking the Adsorption and Electron Injection Rates of CdSe Quantum Dots on TiO2: Linked versus Direct Attachment,” The Journal of Physical Chemistry C, Vol. 115, No. 27, 2011, pp. 13511-13519.
http://dx.doi.org/10.1021/jp203055d
[27] D. V. Talapin, S. Haubold, A. L. Rogach, A. Kornowski, M. Haase and H. Weller, “A Novel Organometallic Synthesis of Highly Luminescent CdTe Nanocrystals,” The Journal of Physical Chemistry B, Vol. 105, No. 12, 2001, pp. 2260-2263. http://dx.doi.org/10.1021/jp003177o
[28] G. Syrrokostas, M. Giannouli and P. Yianoulis, “Effects of Paste Storage on the Properties of Nanostructured Thin Films for the Development of Dye-Sensitized Solar Cells,” Renewable Energy, Vol. 34, 2009, pp. 1759-1764.
[29] Y.-K. Kuo, B.-T. Liou, S.-H. Yen and H.-Y. Chu, “Vegard’s Law Deviation in Lattice Constant and Band Gap Bowing Parameter of Zincblende InxGa1-xN,” Optics Communications, Vol. 237, 2004, pp. 363-369.
[30] O. Madelung, “Semiconductors: Data Handbook,” 3rd Edition, Springer-Verlag, Berlin, 2004.
http://dx.doi.org/10.1007/978-3-642-18865-7

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.