(–)-Epigallocatechingallate Interferes RANKL/RANK Signal Pathway and Induces Apoptosis during Osteoclastogenesis in RAW264 Cell

Abstract

Green tea catechin, (–)-epigallocatechin-3-gallate [(–)-EGCG], was found to increase osteogenic functioning in mesenchymal stem cells. This study qualified EGCG, the strongest inhibitory efficiency for receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL)-activated osteoclastogenesis among other green tea catechins for RAW264, a murine preosteoclast cell line. Moreover, EGCG inhibited tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cell formation dose dependently in both single culture and co-culture systems, the expression of transcription factor, nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1) and some osteoclastic genes. Especially, EGCG exhibited a strong inhibitory effect on the expression levels of RANK, the receptor of RANKL, and OSCAR, a key co-stimulator of the RANKL/RANK signal. Simultaneously, apoptotic genes expression and Hoechst staining revealed that EGCG induced apoptosis in RAW264. Taken together, these data suggest that the inhibitory effect of EGCG to osteoclastogenesis is associated with a down regulation of RANKL/RANK signal, and increased apoptosis of preosteoclasts.

Share and Cite:

R. Zhao, M. Kamon and K. Sakamoto, "(–)-Epigallocatechingallate Interferes RANKL/RANK Signal Pathway and Induces Apoptosis during Osteoclastogenesis in RAW264 Cell," Food and Nutrition Sciences, Vol. 5 No. 2, 2014, pp. 107-116. doi: 10.4236/fns.2014.52014.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] C. Menaa, N. Kurihara and G. D. Roodman, “CFU-GM Derived Cells Form Osteoclasts at a Very High Efficiency,” Biochemical and Biophysical Research Communications, Vol. 267, No. 3, 2000, pp. 943-946.
http://dx.doi.org/10.1006/bbrc.1999.2042
[2] M. Zaidi, “Skeletal Remodeling in Health and Disease,” Nature Medicine, Vol. 13, No. 7, 2007, pp. 791-801.
http://dx.doi.org/10.1038/nm1593
[3] M. Yavropoulou and J. G. Yovos, “Osteoclastogenesis- Current Knowledge and Future Perspectives,” The Journal of Musculoskeletal and Neuronal Interactions, Vol. 8, No. 3, 2008, pp. 204-216.
[4] O. H. Kwon, C. K. Lee, Y. I. Lee, S. G. Paik and H. J. Lee, “The Hematopoietic Transcription Factor PU.1 Regulates RANK Gene Expression in Myeloid Progenitors,” Biochemical and Biophysical Research Communications, Vol. 335, No. 2, 2005, pp. 437-446.
http://dx.doi.org/10.1016/j.bbrc.2005.07.092
[5] W. C. Dougall, M. Glaccum, K. Charrier, K. Roharbach, T. De Smedt, E. Daro, J. Smith, M. E. Tometsko, C. R. Maliszewski, A. Armstrong, V. Shen, S. Bain, D. Cosman, D. Anderson, P. J. Morrissey, J. J. Peschon and J. Schuh, “RANK Is Essential for Osteoclast and Lymph Node Development,” Genes and Development, Vol. 13, 1999, pp. 2412-2424. http://dx.doi.org/10.1101/gad.13.18.2412
[6] H. Takayanagi, “Induction and Activation of the Transcription Factor NFATc1 (NFAT2) Integrate RANKL Signaling for Terminal Differentiation of Osteoclasts,” Developmental Cell, Vol. 3, No. 6, 2002, pp. 889-901.
http://dx.doi.org/10.1016/S1534-5807(02)00369-6
[7] M. Matsumoto, M. Kogawa, S. Wada, H. Takayanagi, M. Tsujimoto, S. Katayama, K. Hisatake and Y. Nogi, “Essential Role of p38 Mitogen-Activated Protein Kinase in Cathepsin K Gene Expression during Osteoclastogenes Is through Association of NFATc1 and PU.1,” Journal of Biological Chemistry, Vol. 279, No. 44, 2004, pp. 45969- 45979. http://dx.doi.org/10.1074/jbc.M408795200
[8] Y. Kim, K. Sato, M. Asagiri, I. Morita, K. Soma and H. Takayanagi, “Contribution of NFATc1 to the Transcriptional Control of Immuno Receptor OSCAR But Not TREM-2 during Osteoclastogenesis,” Journal of Biological Chemistry, Vol. 280, No. 38, 2005, pp. 32905-32913.
http://dx.doi.org/10.1074/jbc.M505820200
[9] N. Kim, M. Takami and J. Rho, “A Novel Member of the Leukocyte Receptor Complex Regulates Osteoclast Differentiation,” Journal of Experimental Medicine, Vol. 195, No. 2, 2002, pp. 201-209.
[10] T. Koga, “Costimulatory Signals Mediated by the ITAM Motif Cooperate with RANKL for Bone Homeostasis,” Nature, Vol. 428, No. 6984, 2004, pp. 758-763.
http://dx.doi.org/10.1038/nature02444
[11] H. Takayanagi, “Osteoimmunology: Shared Mechanisms and Crosstalk between the Immune and Bone Systems,” Nature Reviews Immunology, Vol. 7, No. 4, 2007, pp. 292-304.
http://dx.doi.org/10.1038/nri2062
[12] A. Brunet, L. B. Sweeney, J. F. Sturgill, K. F. Chua, P. L. Greer, Y. Lin, H. Tran, S. E. Ross, R. Mostoslavsky, H. Y. Cohen, L. S. Hu, H. L. Cheng, M. P. Jedrychowski, S. P. Gygi, D. A. Sinclair, F. W. Alt and M. E. Greenberg, “Stress-Dependent Regulation of FOXO Transcription Factors by the SIRT1 Deacetylase,” Science, Vol. 303, No. 5666, 2004, pp. 2011-2015.
http://dx.doi.org/10.1126/science.1094637
[13] G. Dewson, T. Kratina, H. W. Sim, H. Puthalakath, J. M. Adams, P. M. Colman and R. M. Kluck, “To Trigger Apoptosis, Bak Exposes Its BH3 Domain and Homodimerizes via BH3: Groove Interactions,” Molecular Cell, Vol. 30, No. 3, 2008, pp. 369-380.
http://dx.doi.org/10.1016/j.molcel.2008.04.005
[14] E. Gavathiotis, M. Suzuki, M. L. Davis, K. Pitter, G. H. Bird, S. G. Katz, H. C. Tu, H. Kim, E. H. Cheng, N. Tjandra and L. D. Walensky, “BAX Activation Is Initiated at a Novel Interaction Site,” Nature, Vol. 455, No. 7216, 2008, pp. 1076-1081. http://dx.doi.org/10.1038/nature07396
[15] S. Tanaka, H. Wakeyama, T. Akiyama, K. Takahashi, H. Amano, K. I. Nakayama and K. Nakamura, “Regulation of Osteoclast Apoptosis by bcl-2 Family Protein Bim Andcaspase-3,” Advances in Experimental Medicine and Biology, Vol. 658, 2010, pp. 111-116.
[16] H. J. Fujiki, “Two Stages of Cancer Prevention with Green Tea,” Journal of Cancer Research and Clinical Oncology, Vol. 125, No. 11, 1999, pp. 589-597.
http://dx.doi.org/10.1007/s004320050321
[17] M. Kamon, R. Zhao and K. Sakamoto, “Green Tea Polyphenol (–)-Epigallocatechingallate Suppressed the Differentiation of Murine Osteoblastic MC3T3-E1 Cell,” Cell Biology International, Vol. 34, 2010, pp. 109-116.
[18] H. Takahashi, Y. Akatsu, N. Udagawa, T. Sasaki, A. Ymaguchi and J. M. Moseley, “Osteoblastic Cells Are Involved in Osteoclast Formation,” Endocrinology, Vol. 123, No. 5, 1988, pp. 2600-2602.
http://dx.doi.org/10.1210/endo-123-5-2600
[19] M. Matsumoto, T. Sudo, M. Maruyama, H. Osada and M. Tsujimoto, “Activation of p38 Mitogen-Activated Protein kinase Is Crucial in Osteoclastogenesis Induced by Tumor Necrosis Factor,” FEBBS Letter, Vol. 486, No. 1, 2000, pp. 23-28.
http://dx.doi.org/10.1016/S0014-5793(00)02231-6
[20] J. K. Chang, Y. L. Hsu, I. C. Teng and P. L. Kuo, “Piceatannol Stimulates Osteoblast Differentiation that May Be Mediated by Increased Bone Morphogenetic Protein-2 Production,” European Journal of Pharmacology, Vol. 551, No. 1-3, 2006, pp. 1-9.
http://dx.doi.org/10.1016/j.ejphar.2006.08.073
[21] K. Kodaria, M. Imada, M. Goto, A. Tomoyasu, T. Fukuda and R. Kamijo, “Purification and Identification of a BMP- Like Factor from Bovine Serum,” Biochemical and Biophysical Research Communications, Vol. 345, No. 3, 2006, pp. 1224-1231.
http://dx.doi.org/10.1016/j.bbrc.2006.05.045
[22] P. Chomczynski and N. Sacchi, “Single-Step Method of RNA Isolationby Acid Guanidiniumthiocyanate-phenol- Chloroform Extraction,” Analytical Biochemistry, Vol. 162, 1987, pp. 156-159.
http://dx.doi.org/10.1016/0003-2697(87)90021-2
[23] N. Ishida, K. Hayashi, M. Hoshijima, T. Ogawa, S. Koga and Y. Miyatake, “Large Scale Gene Expression Analysis of Osteoclastogenesis in Vitro and Elucidation of NFAT2 as a Key Regulator,” Journal of Biological Chemistry, Vol. 277, No. 43, 2002, pp. 41147-41156.
http://dx.doi.org/10.1074/jbc.M205063200
[24] H. Kodama, Y. Amagai and S. Sudo, “Establishment of a Clonal Osteogenic Cell Line from Newborn Mouse Calvaria,” Japanese Journal of Oral Biology, Vol. 23, 1981, pp. 899-901.
http://dx.doi.org/10.2330/joralbiosci1965.23.899
[25] T. Katagiri and N. Takahashi, “Regulatory Mechanisms of Osteoblast and Osteoclast Differentiation,” Oral Diseases, Vol. 8, No. 3, 2002, pp. 147-159.
http://dx.doi.org/10.1034/j.1601-0825.2002.01829.x
[26] W. J. Boyle, W. S. Simonet and D. L. Lacey, “Osteoclast Differentiation and Activation,” Nature, Vol. 423, No, 6937, 2003, pp. 337-342.
http://dx.doi.org/10.1038/nature01658
[27] Y. Y. Kong, H. Yshida, I. Sarosi, H. L. Tan, E. Timms, C. Capparelli, S. Morony, A. J. Oliveira-dos-Santos, G. Van, A. Itie, W. Khoo, A. Wakeham, C. R. Dunstan, D. L. Lacey, T. W. Mak, W. J. Boyle and J. M. Penninger, “OPGL Is a Key Regulator of Osteoclastogenesis, Lymphocyte Development and Lymph-Node Organogenesis,” Nature, Vol. 397, No. 6717, 1999, pp. 315-323.
http://dx.doi.org/10.1038/16852
[28] D. J. Eric, P. Lan, J. B. J. Charles, E. Kelly, E. C. Ann, J. W. Jennifer, P. Anna, G. Rajaram and M. Kim, “Bone Morphogenic Protein 2 Directly Enhances Differentiation of Murine Osteoclast Precursors,” Journal of Cellular Biochemistry, Vol. 109, No. 4, 2010, pp. 672-682.
[29] I. Song, J. H. Kim, K. Kim, H. M. Jin, B. U. Youn and N. Kim, “Regulatory Mechanism of NFATc1 in RANKL- Induced Osteoclast Activation,” FEBS Letter, Vol. 583, No. 14, 2009, pp. 2435-2440.
http://dx.doi.org/10.1016/j.febslet.2009.06.047
[30] Y. C. Shang, Z. Z. Chong, J. Hou and K. Maiese, “Foxo3a Governs Early Microglial Proliferation and Employs Mitochondrial Depolarization with Caspase 3, 8, and 9 Cleavage during Oxidant Induced Apoptosis,” Current Neurovascular Research, Vol. 6, No. 4, 2009, pp. 223- 238.
http://dx.doi.org/10.2174/156720209789630302
[31] O. Johnell, B. Gullberg, J. A. Kanis, E. Allander, L. Elffors, J. Dequeker, G. Dilsen, C. Gennari, V. A. Lopes and G. Lyritis, “Risk Factors for Hip Fracture in European Women: The MEDOS Study,” Journal of Bone and Mineral Research, Vol. 10, No. 11, 1995, pp. 1802-1815.
http://dx.doi.org/10.1002/jbmr.5650101125
[32] V. M. Hegarty, H. M. May and K. T. Khaw, “Tea Drinking and Bone Mineral Density in Older Women,” The American Journal of Clinical Nutrition, Vol. 71, No. 4, 2000, pp. 1003-1007.
[33] J. H. Yun, C. S. Kim, K. S. Cho, J. K. Chai, C. K. Kim and S. H. Choi, “(–)-Epigallocatechin Gallate Induces Apoptosis, via Caspase Activation, in Osteoclasts Differentiated from RAW246.7 Cells,” Journal of Periodontal Research, Vol. 42, 2007, pp. 212-218.
http://dx.doi.org/10.1111/j.1600-0765.2006.00935.x
[34] A. C. Bharti, Y. Takada and B. B. Aggarwal, “Curcumin (Diferuloylmethane) Inhibits Receptor Activator of NF- kappa B Ligand-Induced NF-Kappa B Activation in Osteoclast Precursors and Suppresses Osteoclastogenesis,” Journal of Immunology, Vol. 172, No. 10, 2004, pp. 5940- 5947.
[35] P. Boissy, T. L. Andersen, B. M. Abdallah, M. Kassem, T. Plesner and J. M. Delaisse, “Resveratrol Inhibits Myeloma Cells Growth, Prevents Osteoclast Formation, and Promotes Osteoblast Differentiation,” Cancer Research, Vol. 65, No. 21, 2005, pp. 9943-9952.
http://dx.doi.org/10.1158/0008-5472.CAN-05-0651
[36] R. Iwasaki, K. Ito, T. Ishida, M. Hamanoue, S. Adachi, T. Watanabe and Y. Sato, “Catechin, Green Tea Component, Causes Caspase-Independent Necrosis-Like Cell Death in Chronic Myelogenous Leukemia,” Cancer Science, Vol. 100, No. 2, 2009, pp. 349-356.
http://dx.doi.org/10.1111/j.1349-7006.2008.01046.x
[37] U. Ullmann, J. Haller, J. P. Decourt, N. Girault, J. Girault and A. S. Richard-Caudron, “A Single Ascending Dose Study of Epigallocatechingallate in Healthy Volunteers,” Journal of International Medical Research, Vol. 31, No. 2, 2003, pp. 88-101.
http://dx.doi.org/10.1177/147323000303100205

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.